本文整理汇总了Python中sage.graphs.graph.Graph.vertices方法的典型用法代码示例。如果您正苦于以下问题:Python Graph.vertices方法的具体用法?Python Graph.vertices怎么用?Python Graph.vertices使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.graphs.graph.Graph
的用法示例。
在下文中一共展示了Graph.vertices方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __classcall_private__
# 需要导入模块: from sage.graphs.graph import Graph [as 别名]
# 或者: from sage.graphs.graph.Graph import vertices [as 别名]
def __classcall_private__(cls, G, names=None):
"""
Normalize input to ensure a unique representation.
TESTS::
sage: G1 = RightAngledArtinGroup(graphs.CycleGraph(5))
sage: Gamma = Graph([(0,1),(1,2),(2,3),(3,4),(4,0)])
sage: G2 = RightAngledArtinGroup(Gamma)
sage: G3 = RightAngledArtinGroup([(0,1),(1,2),(2,3),(3,4),(4,0)])
sage: G4 = RightAngledArtinGroup(Gamma, 'v')
sage: G1 is G2 and G2 is G3 and G3 is G4
True
Handle the empty graph::
sage: RightAngledArtinGroup(Graph())
Traceback (most recent call last):
...
ValueError: the graph must not be empty
"""
if not isinstance(G, Graph):
G = Graph(G, immutable=True)
else:
G = G.copy(immutable=True)
if G.num_verts() == 0:
raise ValueError("the graph must not be empty")
if names is None:
names = 'v'
if isinstance(names, six.string_types):
if ',' in names:
names = [x.strip() for x in names.split(',')]
else:
names = [names + str(v) for v in G.vertices()]
names = tuple(names)
if len(names) != G.num_verts():
raise ValueError("the number of generators must match the"
" number of vertices of the defining graph")
return super(RightAngledArtinGroup, cls).__classcall__(cls, G, names)
示例2: _check_pbd
# 需要导入模块: from sage.graphs.graph import Graph [as 别名]
# 或者: from sage.graphs.graph.Graph import vertices [as 别名]
def _check_pbd(B,v,S):
r"""
Checks that ``B`` is a PBD on `v` points with given block sizes.
INPUT:
- ``bibd`` -- a list of blocks
- ``v`` (integer) -- number of points
- ``S`` -- list of integers
EXAMPLE::
sage: designs.BalancedIncompleteBlockDesign(40,4).blocks() # indirect doctest
[[0, 1, 2, 12], [0, 3, 6, 9], [0, 4, 8, 10],
[0, 5, 7, 11], [0, 13, 26, 39], [0, 14, 25, 28],
[0, 15, 27, 38], [0, 16, 22, 32], [0, 17, 23, 34],
...
"""
from itertools import combinations
from sage.graphs.graph import Graph
if not all(len(X) in S for X in B):
raise RuntimeError("This is not a nice honest PBD from the good old days !")
g = Graph()
m = 0
for X in B:
g.add_edges(list(combinations(X,2)))
if g.size() != m+binomial(len(X),2):
raise RuntimeError("This is not a nice honest PBD from the good old days !")
m = g.size()
if not (g.is_clique() and g.vertices() == range(v)):
raise RuntimeError("This is not a nice honest PBD from the good old days !")
return B
示例3: graph
# 需要导入模块: from sage.graphs.graph import Graph [as 别名]
# 或者: from sage.graphs.graph.Graph import vertices [as 别名]
def graph(self):
"""
Returns a graph whose vertices correspond to curves in this class, and whose edges correspond to prime degree isogenies.
.. note:
There are only finitely many possible isogeny graphs for
curves over Q [M78]. This function tries to lay out the graph
nicely by special casing each isogeny graph.
.. note:
The vertices are labeled 1 to n rather than 0 to n-1 to
correspond to LMFDB and Cremona labels.
EXAMPLES::
sage: isocls = EllipticCurve('15a3').isogeny_class(use_tuple=False)
sage: G = isocls.graph()
sage: sorted(G._pos.items())
[(1, [-0.8660254, 0.5]), (2, [-0.8660254, 1.5]), (3, [-1.7320508, 0]), (4, [0, 0]), (5, [0, -1]), (6, [0.8660254, 0.5]), (7, [0.8660254, 1.5]), (8, [1.7320508, 0])]
REFERENCES:
.. [M78] B. Mazur. Rational Isogenies of Prime Degree.
*Inventiones mathematicae* 44,129-162 (1978).
"""
from sage.graphs.graph import Graph
M = self.matrix(fill = False)
n = M.nrows() # = M.ncols()
G = Graph(M, format='weighted_adjacency_matrix')
N = self.matrix(fill = True)
D = dict([(v,self.curves[v]) for v in G.vertices()])
# The maximum degree classifies the shape of the isogeny
# graph, though the number of vertices is often enough.
# This only holds over Q, so this code will need to change
# once other isogeny classes are implemented.
if n == 1:
# one vertex
pass
elif n == 2:
# one edge, two vertices. We align horizontally and put
# the lower number on the left vertex.
G.set_pos(pos={0:[-0.5,0],1:[0.5,0]})
else:
maxdegree = max(max(N))
if n == 3:
# o--o--o
centervert = [i for i in range(3) if max(N.row(i)) < maxdegree][0]
other = [i for i in range(3) if i != centervert]
G.set_pos(pos={centervert:[0,0],other[0]:[-1,0],other[1]:[1,0]})
elif maxdegree == 4:
# o--o<8
centervert = [i for i in range(4) if max(N.row(i)) < maxdegree][0]
other = [i for i in range(4) if i != centervert]
G.set_pos(pos={centervert:[0,0],other[0]:[0,1],other[1]:[-0.8660254,-0.5],other[2]:[0.8660254,-0.5]})
elif maxdegree == 27:
# o--o--o--o
centers = [i for i in range(4) if list(N.row(i)).count(3) == 2]
left = [j for j in range(4) if N[centers[0],j] == 3 and j not in centers][0]
right = [j for j in range(4) if N[centers[1],j] == 3 and j not in centers][0]
G.set_pos(pos={left:[-1.5,0],centers[0]:[-0.5,0],centers[1]:[0.5,0],right:[1.5,0]})
elif n == 4:
# square
opp = [i for i in range(1,4) if not N[0,i].is_prime()][0]
other = [i for i in range(1,4) if i != opp]
G.set_pos(pos={0:[1,1],other[0]:[-1,1],opp:[-1,-1],other[1]:[1,-1]})
elif maxdegree == 8:
# 8>o--o<8
centers = [i for i in range(6) if list(N.row(i)).count(2) == 3]
left = [j for j in range(6) if N[centers[0],j] == 2 and j not in centers]
right = [j for j in range(6) if N[centers[1],j] == 2 and j not in centers]
G.set_pos(pos={centers[0]:[-0.5,0],left[0]:[-1,0.8660254],left[1]:[-1,-0.8660254],centers[1]:[0.5,0],right[0]:[1,0.8660254],right[1]:[1,-0.8660254]})
elif maxdegree == 18:
# two squares joined on an edge
centers = [i for i in range(6) if list(N.row(i)).count(3) == 2]
top = [j for j in range(6) if N[centers[0],j] == 3]
bl = [j for j in range(6) if N[top[0],j] == 2][0]
br = [j for j in range(6) if N[top[1],j] == 2][0]
G.set_pos(pos={centers[0]:[0,0.5],centers[1]:[0,-0.5],top[0]:[-1,0.5],top[1]:[1,0.5],bl:[-1,-0.5],br:[1,-0.5]})
elif maxdegree == 16:
# tree from bottom, 3 regular except for the leaves.
centers = [i for i in range(8) if list(N.row(i)).count(2) == 3]
center = [i for i in centers if len([j for j in centers if N[i,j] == 2]) == 2][0]
centers.remove(center)
bottom = [j for j in range(8) if N[center,j] == 2 and j not in centers][0]
left = [j for j in range(8) if N[centers[0],j] == 2 and j != center]
right = [j for j in range(8) if N[centers[1],j] == 2 and j != center]
G.set_pos(pos={center:[0,0],bottom:[0,-1],centers[0]:[-0.8660254,0.5],centers[1]:[0.8660254,0.5],left[0]:[-0.8660254,1.5],right[0]:[0.8660254,1.5],left[1]:[-1.7320508,0],right[1]:[1.7320508,0]})
elif maxdegree == 12:
# tent
centers = [i for i in range(8) if list(N.row(i)).count(2) == 3]
left = [j for j in range(8) if N[centers[0],j] == 2]
right = []
for i in range(3):
right.append([j for j in range(8) if N[centers[1],j] == 2 and N[left[i],j] == 3][0])
G.set_pos(pos={centers[0]:[-0.75,0],centers[1]:[0.75,0],left[0]:[-0.75,1],right[0]:[0.75,1],left[1]:[-1.25,-0.75],right[1]:[0.25,-0.75],left[2]:[-0.25,-0.25],right[2]:[1.25,-0.25]})
G.set_vertices(D)
G.relabel(range(1,n+1))
return G
示例4: _check_pbd
# 需要导入模块: from sage.graphs.graph import Graph [as 别名]
# 或者: from sage.graphs.graph.Graph import vertices [as 别名]
def _check_pbd(B,v,S):
r"""
Checks that ``B`` is a PBD on ``v`` points with given block sizes ``S``.
The points of the balanced incomplete block design are implicitely assumed
to be `\{0, ..., v-1\}`.
INPUT:
- ``B`` -- a list of blocks
- ``v`` (integer) -- number of points
- ``S`` -- list of integers `\geq 2`.
EXAMPLE::
sage: designs.balanced_incomplete_block_design(40,4).blocks() # indirect doctest
[[0, 1, 2, 12], [0, 3, 6, 9], [0, 4, 8, 10],
[0, 5, 7, 11], [0, 13, 26, 39], [0, 14, 25, 28],
[0, 15, 27, 38], [0, 16, 22, 32], [0, 17, 23, 34],
...
sage: from sage.combinat.designs.bibd import _check_pbd
sage: _check_pbd([[1],[]],1,[1,0])
Traceback (most recent call last):
...
RuntimeError: All integers of S must be >=2
TESTS::
sage: _check_pbd([[1,2]],2,[2])
Traceback (most recent call last):
...
RuntimeError: The PBD covers a point 2 which is not in {0, 1}
sage: _check_pbd([[1,2]]*2,2,[2])
Traceback (most recent call last):
...
RuntimeError: The pair (1,2) is covered more than once
sage: _check_pbd([],2,[2])
Traceback (most recent call last):
...
RuntimeError: The pair (0,1) is not covered
sage: _check_pbd([[1,2],[1]],2,[2])
Traceback (most recent call last):
...
RuntimeError: A block has size 1 while S=[2]
"""
from itertools import combinations
from sage.graphs.graph import Graph
for X in B:
if len(X) not in S:
raise RuntimeError("A block has size {} while S={}".format(len(X),S))
if any(x < 2 for x in S):
raise RuntimeError("All integers of S must be >=2")
if v == 0 or v == 1:
if B:
raise RuntimeError("A PBD with v<=1 is expected to be empty.")
g = Graph()
g.add_vertices(range(v))
m = 0
for X in B:
for i,j in combinations(X,2):
g.add_edge(i,j)
m_tmp = g.size()
if m_tmp != m+1:
raise RuntimeError("The pair ({},{}) is covered more than once".format(i,j))
m = m_tmp
if g.vertices() != range(v):
from sage.sets.integer_range import IntegerRange
p = (set(g.vertices())-set(range(v))).pop()
raise RuntimeError("The PBD covers a point {} which is not in {}".format(p,IntegerRange(v)))
if not g.is_clique():
for p1 in g:
if g.degree(p1) != v-1:
break
neighbors = g.neighbors(p1)+[p1]
p2 = (set(g.vertices())-set(neighbors)).pop()
raise RuntimeError("The pair ({},{}) is not covered".format(p1,p2))
return B