本文整理汇总了Python中sage.graphs.graph.Graph.neighbors方法的典型用法代码示例。如果您正苦于以下问题:Python Graph.neighbors方法的具体用法?Python Graph.neighbors怎么用?Python Graph.neighbors使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.graphs.graph.Graph
的用法示例。
在下文中一共展示了Graph.neighbors方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: nauty
# 需要导入模块: from sage.graphs.graph import Graph [as 别名]
# 或者: from sage.graphs.graph.Graph import neighbors [as 别名]
#.........这里部分代码省略.........
- ``options`` (string) -- anything else that should be forwarded as
input to Nauty's genbg. See its documentation for more information :
`<http://cs.anu.edu.au/~bdm/nauty/>`_.
.. NOTE::
For genbg the *first class* elements are vertices, and *second
class* elements are the hypergraph's sets.
OUTPUT:
A tuple of tuples.
EXAMPLES:
Small hypergraphs::
sage: list(hypergraphs.nauty(4,2)) # optional - nauty
[((), (0,), (1,), (0, 1))]
Only connected ones::
sage: list(hypergraphs.nauty(2,2, connected = True)) # optional - nauty
[((0,), (0, 1))]
Non-empty sets only::
sage: list(hypergraphs.nauty(3,2, set_min_size = 1)) # optional - nauty
[((0,), (1,), (0, 1))]
The Fano Plane, as the only 3-uniform hypergraph with 7 sets and 7
vertices::
sage: fano = next(hypergraphs.nauty(7, 7, uniform=3, max_intersection=1)) # optional - nauty
sage: print fano # optional - nauty
((0, 1, 2), (0, 3, 4), (0, 5, 6), (1, 3, 5), (2, 4, 5), (2, 3, 6), (1, 4, 6))
The Fano Plane, as the only 3-regular hypergraph with 7 sets and 7
vertices::
sage: fano = next(hypergraphs.nauty(7, 7, regular=3, max_intersection=1)) # optional - nauty
sage: print fano # optional - nauty
((0, 1, 2), (0, 3, 4), (0, 5, 6), (1, 3, 5), (2, 4, 5), (2, 3, 6), (1, 4, 6))
"""
import subprocess
from sage.misc.package import is_package_installed
if not is_package_installed("nauty"):
raise TypeError("The optional nauty spkg does not seem to be installed")
nauty_input = options
if connected:
nauty_input += " -c"
if not multiple_sets:
nauty_input += " -z"
if not max_intersection is None:
nauty_input += " -Z"+str(max_intersection)
# degrees and sizes
if not regular is False:
vertex_max_degree = vertex_min_degree = regular
if vertex_max_degree is None:
vertex_max_degree = number_of_sets
if vertex_min_degree is None:
vertex_min_degree = 0
if not uniform is False:
set_max_size = set_min_size = uniform
if set_max_size is None:
set_max_size = number_of_vertices
if set_min_size is None:
set_min_size = 0
nauty_input += " -d"+str(vertex_min_degree)+":"+str(set_min_size)
nauty_input += " -D"+str(vertex_max_degree)+":"+str(set_max_size)
nauty_input += " "+str(number_of_vertices) +" "+str(number_of_sets)+" "
sp = subprocess.Popen("genbg {0}".format(nauty_input), shell=True,
stdin=subprocess.PIPE, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, close_fds=True)
if debug:
yield sp.stderr.readline()
gen = sp.stdout
total = number_of_sets + number_of_vertices
while True:
try:
s = next(gen)
except StopIteration:
raise StopIteration("Exhausted list of graphs from nauty geng")
from sage.graphs.graph import Graph
G = Graph(s[:-1], format='graph6')
yield tuple( tuple( x for x in G.neighbors(v)) for v in range(number_of_vertices, total))
示例2: _check_pbd
# 需要导入模块: from sage.graphs.graph import Graph [as 别名]
# 或者: from sage.graphs.graph.Graph import neighbors [as 别名]
def _check_pbd(B,v,S):
r"""
Checks that ``B`` is a PBD on ``v`` points with given block sizes ``S``.
The points of the balanced incomplete block design are implicitely assumed
to be `\{0, ..., v-1\}`.
INPUT:
- ``B`` -- a list of blocks
- ``v`` (integer) -- number of points
- ``S`` -- list of integers `\geq 2`.
EXAMPLE::
sage: designs.balanced_incomplete_block_design(40,4).blocks() # indirect doctest
[[0, 1, 2, 12], [0, 3, 6, 9], [0, 4, 8, 10],
[0, 5, 7, 11], [0, 13, 26, 39], [0, 14, 25, 28],
[0, 15, 27, 38], [0, 16, 22, 32], [0, 17, 23, 34],
...
sage: from sage.combinat.designs.bibd import _check_pbd
sage: _check_pbd([[1],[]],1,[1,0])
Traceback (most recent call last):
...
RuntimeError: All integers of S must be >=2
TESTS::
sage: _check_pbd([[1,2]],2,[2])
Traceback (most recent call last):
...
RuntimeError: The PBD covers a point 2 which is not in {0, 1}
sage: _check_pbd([[1,2]]*2,2,[2])
Traceback (most recent call last):
...
RuntimeError: The pair (1,2) is covered more than once
sage: _check_pbd([],2,[2])
Traceback (most recent call last):
...
RuntimeError: The pair (0,1) is not covered
sage: _check_pbd([[1,2],[1]],2,[2])
Traceback (most recent call last):
...
RuntimeError: A block has size 1 while S=[2]
"""
from itertools import combinations
from sage.graphs.graph import Graph
for X in B:
if len(X) not in S:
raise RuntimeError("A block has size {} while S={}".format(len(X),S))
if any(x < 2 for x in S):
raise RuntimeError("All integers of S must be >=2")
if v == 0 or v == 1:
if B:
raise RuntimeError("A PBD with v<=1 is expected to be empty.")
g = Graph()
g.add_vertices(range(v))
m = 0
for X in B:
for i,j in combinations(X,2):
g.add_edge(i,j)
m_tmp = g.size()
if m_tmp != m+1:
raise RuntimeError("The pair ({},{}) is covered more than once".format(i,j))
m = m_tmp
if g.vertices() != range(v):
from sage.sets.integer_range import IntegerRange
p = (set(g.vertices())-set(range(v))).pop()
raise RuntimeError("The PBD covers a point {} which is not in {}".format(p,IntegerRange(v)))
if not g.is_clique():
for p1 in g:
if g.degree(p1) != v-1:
break
neighbors = g.neighbors(p1)+[p1]
p2 = (set(g.vertices())-set(neighbors)).pop()
raise RuntimeError("The pair ({},{}) is not covered".format(p1,p2))
return B