本文整理汇总了Python中sage.graphs.graph.Graph.complement方法的典型用法代码示例。如果您正苦于以下问题:Python Graph.complement方法的具体用法?Python Graph.complement怎么用?Python Graph.complement使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.graphs.graph.Graph
的用法示例。
在下文中一共展示了Graph.complement方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: CompleteMultipartiteGraph
# 需要导入模块: from sage.graphs.graph import Graph [as 别名]
# 或者: from sage.graphs.graph.Graph import complement [as 别名]
def CompleteMultipartiteGraph(l):
r"""
Returns a complete multipartite graph.
INPUT:
- ``l`` -- a list of integers : the respective sizes
of the components.
EXAMPLE:
A complete tripartite graph with sets of sizes
`5, 6, 8`::
sage: g = graphs.CompleteMultipartiteGraph([5, 6, 8]); g
Multipartite Graph with set sizes [5, 6, 8]: Graph on 19 vertices
It clearly has a chromatic number of 3::
sage: g.chromatic_number()
3
"""
g = Graph()
for i in l:
g = g + CompleteGraph(i)
g = g.complement()
g.name("Multipartite Graph with set sizes "+str(l))
return g
示例2: CompleteMultipartiteGraph
# 需要导入模块: from sage.graphs.graph import Graph [as 别名]
# 或者: from sage.graphs.graph.Graph import complement [as 别名]
def CompleteMultipartiteGraph(l):
r"""
Returns a complete multipartite graph.
INPUT:
- ``l`` -- a list of integers : the respective sizes
of the components.
EXAMPLE:
A complete tripartite graph with sets of sizes
`5, 6, 8`::
sage: g = graphs.CompleteMultipartiteGraph([5, 6, 8]); g
Multipartite Graph with set sizes [5, 6, 8]: Graph on 19 vertices
It clearly has a chromatic number of 3::
sage: g.chromatic_number()
3
"""
n = sum(l) #getting the number of vertices
r = len(l) #getting the number of partitions
positions = {}
if r > 2: #position code gives bad results on bipartite or isolated graphs
'''
Produce a layout of the vertices so that vertices in the same
vertex set are adjecent and clearly separated from vertices in other
vertex sets.
This is done by calculating the vertices of an r-gon then
calculating the slope between adjacent vertices. We then 'walk'
around the r-gon placing graph vertices in regular intervals between
adjacent vertices of the r-gon.
Makes a nicely organized graph like in this picture:
https://commons.wikimedia.org/wiki/File:Turan_13-4.svg
'''
points = [[cos(2*pi*i/r),sin(2*pi*i/r)] for i in range(r)]
slopes = [[(points[(i+1)%r][0]-points[i%r][0]),
(points[(i+1)%r][1]-points[i%r][1])] for i in range(r)]
counter = 0
for i in range(len(l)):
vertex_set_size = l[i]+1
for j in range(1,vertex_set_size):
x = points[i][0]+slopes[i][0]*j/(vertex_set_size)
y = points[i][1]+slopes[i][1]*j/(vertex_set_size)
positions[counter] = (x,y)
counter += 1
g = Graph()
for i in l:
g = g + CompleteGraph(i)
g = g.complement()
g.set_pos(positions)
g.name("Multipartite Graph with set sizes "+str(l))
return g