当前位置: 首页>>代码示例>>Python>>正文


Python RBM.get_sampling_fn方法代码示例

本文整理汇总了Python中rbm.RBM.get_sampling_fn方法的典型用法代码示例。如果您正苦于以下问题:Python RBM.get_sampling_fn方法的具体用法?Python RBM.get_sampling_fn怎么用?Python RBM.get_sampling_fn使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在rbm.RBM的用法示例。


在下文中一共展示了RBM.get_sampling_fn方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_rbm_mnist

# 需要导入模块: from rbm import RBM [as 别名]
# 或者: from rbm.RBM import get_sampling_fn [as 别名]

#.........这里部分代码省略.........
    n_vis = train_x.get_value(borrow=True).shape[1]

    print numpy.linalg.matrix_rank(train_x.get_value(borrow=True))

    n_train_batches = train_x.get_value(borrow=True).shape[0] / batch_size


    # construct the RBM class
    rbm = RBM(n_visible=n_vis, n_hidden=n_hidden, isPCD=isPCD)
    train_fn = rbm.get_train_fn(train_x, batch_size)


    #################################
    #     Training the RBM          #
    #################################
    if not os.path.isdir(output_folder):
        os.makedirs(output_folder)
    os.chdir(output_folder)

    plotting_time = 0.
    start_time = time.clock()
    import PIL.Image
    from visualizer import tile_raster_images

    # go through training epochs
    for epoch in xrange(training_epochs):

        # go through the training set
        mean_cost = []
        for batch_index in xrange(n_train_batches):
            # for each batch, we extract the gibbs chain
            new_cost = train_fn(index=batch_index, lr=learning_rate)
            mean_cost += [new_cost]

        print 'Training epoch %d, cost is ' % epoch, numpy.mean(mean_cost)
        # monitor projected rank
        projection = rbm.project(train_x)
        print 'rank: ' + str(numpy.linalg.matrix_rank(projection))

        # W shape is [784 500]
        # Plot filters after each training epoch
        plotting_start = time.clock()
        # Construct image from the weight matrix
        image = PIL.Image.fromarray(tile_raster_images(
            X=rbm.W.get_value(borrow=True).T,
            img_shape=(28, 28), tile_shape=(20, 20),
            tile_spacing=(1, 1)))
        image.save('filters_at_epoch_%i.png' % epoch)
        plotting_stop = time.clock()
        plotting_time += (plotting_stop - plotting_start)

    end_time = time.clock()
    pretraining_time = (end_time - start_time) - plotting_time
    print ('Training took %f minutes' % (pretraining_time / 60.))


    #################################
    #     Sampling from the RBM     #
    #################################

    test_idx = 1

    test_x, test_y = data['test']
    sample_fn = rbm.get_sampling_fn(test_x, test_idx, n_chains)

    print '... begin sampling'
    # plot initial image first
    orig_img = test_x.get_value(borrow=True)[test_idx:test_idx + 1]
    image = PIL.Image.fromarray(tile_raster_images(
        X=orig_img,
        img_shape=(28, 28), tile_shape=(1, 1),
        tile_spacing=(1, 1)))
    image.save('orig_img.png')

    # create a space to store the image for plotting ( we need to leave
    # room for the tile_spacing as well)
    image_data = numpy.zeros((29 * n_samples + 1, 29 * n_chains - 1),
                             dtype='uint8')
    for idx in xrange(n_samples):
        # generate `plot_every` intermediate samples that we discard,
        # because successive samples in the chain are too correlated
        vis_mf, vis_sample = sample_fn()
        print ' ... plotting sample ', idx
        image_data[29 * idx:29 * idx + 28, :] = tile_raster_images(
            X=vis_mf,
            img_shape=(28, 28),
            tile_shape=(1, n_chains),
            tile_spacing=(1, 1))
        # construct image

    image = PIL.Image.fromarray(image_data)
    image.save('samples.png')
    os.chdir('../')

    #################################
    #     Projecting from the RBM   #
    #################################
    projection = rbm.project(train_x)

    print numpy.linalg.matrix_rank(projection)
开发者ID:bboalimoe,项目名称:DENA,代码行数:104,代码来源:rbm_variants.py


注:本文中的rbm.RBM.get_sampling_fn方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。