当前位置: 首页>>代码示例>>Python>>正文


Python RBM.build_RBM方法代码示例

本文整理汇总了Python中rbm.RBM.build_RBM方法的典型用法代码示例。如果您正苦于以下问题:Python RBM.build_RBM方法的具体用法?Python RBM.build_RBM怎么用?Python RBM.build_RBM使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在rbm.RBM的用法示例。


在下文中一共展示了RBM.build_RBM方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ES

# 需要导入模块: from rbm import RBM [as 别名]
# 或者: from rbm.RBM import build_RBM [as 别名]
class ES(object):
    def __init__(self,knapsack_file="weing1.pkl"):
        super(ES, self).__init__()
        # GA stuff
        self.generations = 100
        self.knapsack = pickle.load(open(knapsack_file))
        print "k:",self.knapsack
        self.N = int(self.knapsack.items)
        # RMB stuff
        self.RBM = RBM(n_visible=self.N,n_hidden=50) 
        self.sample_RBM()

        # Stats stuff
        self.population_snapshots = []
        self.genotypes_history = Genotypes(min=False)

    def create_individual(self,N):
        I = Individual()
        I.genotype = [random.choice([0,1]) for i in range(N)]
        I.fitness = 0
        return I

    def fitness_function(self,individual,knapsack=None):
        weights = []
        for i,c in enumerate(knapsack.capacities):
            weights.append(np.sum(np.array(knapsack.constraints[i])*individual.genotype))
        over = 0
        for i,w in enumerate(weights):
            if w > knapsack.capacities[i]:
                over += (w - knapsack.capacities[i])
        if over > 0:
            return -over
        else:
            return np.sum(np.array(knapsack.values)*individual.genotype)

    def evaluate_population(self,population,params=None):
        for p in population:
            p.fitness = self.fitness_function(p,params)

    def normalise_fitnesses(self,population):
        max_fitness = np.max([p.fitness for p in population])
        min_fitness = np.min([p.fitness for p in population])
        for p in population:
            p.normalised_fitness = (p.fitness + min_fitness)/(min_fitness+max_fitness)

    def offspring_from_sample(self,individual_to_copy):
        individual = copy.deepcopy(individual_to_copy)
        individual_genome = np.array(individual.genotype).reshape(1,-1)
        output = self.sample_from_RBM(np.array(individual_genome))
        # print "output:",output
        individual.genotype[:] = output[0][:]
        return individual

    def train_RBM(self,k=20,lr=0.1):
        train_data = self.genotypes_history.top_x_percent()
        train_set = SequenceDataset(train_data,batch_size=20,number_batches=None)
        inputs,params,cost,monitor,updates,consider_constant = self.RBM.build_RBM(k=k)
        sgd_optimizer(params,[inputs],cost,train_set,updates_old=updates,monitor=monitor,
                      consider_constant=[consider_constant],lr=0.1,num_epochs=10)

    def sample_RBM(self,k=20):
        v,v_sample,updates = self.RBM.sample_RBM(k=k)
        self.sample_from_RBM = theano.function([v],v_sample,updates=updates)

    def run_1_plus_1(self, path= "", experiment = 0):
        random.seed(random.uniform(0,1000000))
        print("Start of evolution")
        parent = self.create_individual(self.N)
        # Evaluate the parent
        parent.fitness = self.fitness_function(parent,self.knapsack)
        self.genotypes_history.add_genotypes([parent])
        self.genotypes_history.get_and_save_top_x(1.0)
        self.train_RBM()

        # Begin the evolution
        for g in range(self.generations):
            print("-- Generation %i --" % (g + 1))
            offspring = self.offspring_from_sample(parent)
            offspring.fitness = self.fitness_function(parent,self.knapsack)
            print "parent_fitness:",parent.fitness
            print "offspring_fitness:",offspring.fitness
            if offspring.fitness > parent.fitness:
                print "offspring replacing parent"
                parent = offspring
            self.genotypes_history.add_genotypes([offspring])
            self.genotypes_history.get_and_save_top_x(1.0)
            self.train_RBM()
        print("-- End of (successful) evolution --")
        return parent

    def run_mu_plus_lambda(self, path= "", experiment = 0):
        population_size = 50
        random.seed(random.uniform(0,1000000))
        print("Start of evolution")
        population = [self.create_individual(self.N) for i in range(population_size)]
        # Evaluate the population
        self.evaluate_population(population,self.knapsack)
        self.genotypes_history.add_genotypes(population)
        self.genotypes_history.get_and_save_top_x(1.0)
        self.train_RBM()
#.........这里部分代码省略.........
开发者ID:alexanderchurchill,项目名称:dbn_ga2,代码行数:103,代码来源:simple_es.py


注:本文中的rbm.RBM.build_RBM方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。