本文整理汇总了Python中pypet.Trajectory.v_standard_result方法的典型用法代码示例。如果您正苦于以下问题:Python Trajectory.v_standard_result方法的具体用法?Python Trajectory.v_standard_result怎么用?Python Trajectory.v_standard_result使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pypet.Trajectory
的用法示例。
在下文中一共展示了Trajectory.v_standard_result方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_conversions
# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import v_standard_result [as 别名]
def test_conversions(self):
filename = make_temp_dir("hdf5manipulation.hdf5")
traj = Trajectory(name=make_trajectory_name(self), filename=filename)
trajname = traj.v_name
traj.v_standard_result = SharedResult
traj.f_store(only_init=True)
traj.f_add_result("shared_data")
thedata = np.zeros((1000, 1000))
myarray = SharedArray("array", traj.shared_data, trajectory=traj)
traj.shared_data["array"] = myarray
mytable = SharedTable("t1", traj.shared_data, trajectory=traj)
traj.shared_data["t1"] = mytable
# mytable2 = SharedTableResult('h.t2', trajectory=traj)
# mytable3 = SharedTableResult('jjj.t3', trajectory=traj)
dadict = {"hi": [1, 2, 3, 4, 5], "shu": ["bi", "du", "da", "ha", "hui"]}
dadict2 = {"answer": [42]}
res = traj.f_add_result("shared.dfs")
res["df"] = SharedPandasFrame()
res["df"].create_shared_data(data=pd.DataFrame(dadict), trajectory=traj)
frame = SharedPandasFrame("df1", traj.f_get("shared.dfs"), trajectory=traj)
frame.create_shared_data(data=pd.DataFrame(dadict2))
res["df1"] = frame
traj.f_add_result("mylist", [1, 2, 3])
traj.f_add_result("my.mytuple", k=(1, 2, 3), wa=42)
traj.f_add_result("my.myarray", np.zeros((50, 50)))
traj.f_add_result("my.myframe", data=pd.DataFrame(dadict2))
traj.f_add_result("my.mytable", ObjectTable(data=dadict2))
myarray.create_shared_data(data=thedata)
mytable.create_shared_data(first_row={"hi": compat.tobytes("hi"), "huhu": np.ones(3)})
traj.f_store()
data = myarray.read()
arr = myarray.get_data_node()
self.assertTrue(np.all(data == thedata))
with StorageContextManager(traj) as cm:
myarray[2, 2] = 10
data = myarray.read()
self.assertTrue(data[2, 2] == 10)
self.assertTrue(data[2, 2] == 10)
self.assertFalse(traj.v_storage_service.is_open)
traj = load_trajectory(name=trajname, filename=filename, load_all=2, dynamic_imports=SharedResult)
make_ordinary_result(traj.shared_data, "array", trajectory=traj)
array = traj.shared_data.array
self.assertTrue(isinstance(array, np.ndarray))
thedata[2, 2] = 10
self.assertTrue(np.all(array == thedata))
make_ordinary_result(traj.shared_data, "t1", trajectory=traj)
t1 = traj.shared_data.t1
self.assertTrue(isinstance(t1, ObjectTable)) #
self.assertTrue(np.all(t1["huhu"][0] == np.ones(3)))
dfs = traj.shared.dfs
make_ordinary_result(traj.shared.dfs, "df", trajectory=traj)
theframe = dfs.f_get("df")
self.assertTrue(isinstance(dfs, Result))
self.assertTrue(isinstance(theframe, pd.DataFrame))
self.assertTrue(theframe["hi"][0] == 1)
listres = traj.f_get("mylist")
listres = make_shared_result(listres, 0, trajectory=traj)
with StorageContextManager(traj) as cm:
self.assertTrue(listres[0][2] == 3)
listres[0][0] = 4
self.assertTrue(listres[0][0] == 4)
listres = make_ordinary_result(listres, 0, trajectory=traj)
traj = load_trajectory(name=trajname, filename=filename, load_all=2, dynamic_imports=SharedResult)
mylist = traj.mylist
self.assertTrue(isinstance(listres, Result))
self.assertTrue(mylist[0] == 4)
self.assertTrue(isinstance(mylist, list))
mytuple = traj.mytuple
with self.assertRaises(AttributeError):
mytuple = make_shared_result(mytuple, "mylist", traj, new_class=SharedArray)
mytuple = make_shared_result(mytuple, "k", traj, new_class=SharedArray)
self.assertTrue(mytuple.k[1] == 2)
mytuple = make_ordinary_result(mytuple, "k", trajectory=traj)
self.assertTrue(isinstance(mytuple.k, tuple))
self.assertTrue(mytuple.k[2] == 3)
myframe = traj.myframe
myframe = make_shared_result(myframe, "data", traj)
theframe = myframe.data.read()
#.........这里部分代码省略.........
示例2: test_conversions
# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import v_standard_result [as 别名]
def test_conversions(self):
filename = make_temp_dir('hdf5manipulation.hdf5')
traj = Trajectory(name=make_trajectory_name(self), filename=filename)
trajname = traj.v_name
traj.v_standard_result = SharedResult
traj.f_store(only_init=True)
traj.f_add_result('shared_data')
thedata = np.zeros((1000, 1000))
myarray = SharedArray('array', traj.shared_data, trajectory=traj)
traj.shared_data['array'] = myarray
mytable = SharedTable('t1', traj.shared_data, trajectory=traj)
traj.shared_data['t1'] = mytable
dadict = {'hi': [1, 2, 3, 4, 5], 'shu': ['bi', 'du', 'da', 'ha', 'hui']}
dadict2 = {'answer': [42]}
res = traj.f_add_result('shared.dfs')
res['df'] = SharedPandasFrame()
res['df'].create_shared_data(data=pd.DataFrame(dadict), trajectory=traj)
frame = SharedPandasFrame('df1', traj.f_get('shared.dfs'), trajectory=traj,
add_to_parent=True)
frame.create_shared_data(data=pd.DataFrame(dadict2),)
res['df1'] = frame
traj.f_add_result('mylist', [1, 2, 3])
traj.f_add_result('my.mytuple', k=(1, 2, 3), wa=42)
traj.f_add_result('my.myarray', np.zeros((50, 50)))
traj.f_add_result('my.myframe', data=pd.DataFrame(dadict2))
traj.f_add_result('my.mytable', ObjectTable(data=dadict2))
myarray.create_shared_data(data=thedata)
mytable.create_shared_data(first_row={'hi': compat.tobytes('hi'), 'huhu': np.ones(3)})
traj.f_store()
data = myarray.read()
myarray.get_data_node()
self.assertTrue(np.all(data == thedata))
with StorageContextManager(traj):
myarray[2, 2] = 10
data = myarray.read()
self.assertTrue(data[2, 2] == 10)
self.assertTrue(data[2, 2] == 10)
self.assertFalse(traj.v_storage_service.is_open)
traj = load_trajectory(name=trajname, filename=filename, load_all=2,
dynamic_imports=SharedResult)
make_ordinary_result(traj.shared_data, 'array', trajectory=traj)
array = traj.shared_data.array
self.assertTrue(isinstance(array, np.ndarray))
thedata[2, 2] = 10
self.assertTrue(np.all(array == thedata))
make_ordinary_result(traj.shared_data, 't1', trajectory=traj,)
t1 = traj.shared_data.t1
self.assertTrue(isinstance(t1, ObjectTable))
self.assertTrue(np.all(t1['huhu'][0] == np.ones(3)))
dfs = traj.shared.dfs
make_ordinary_result(traj.shared.dfs, 'df', trajectory=traj)
theframe = dfs.f_get('df')
self.assertTrue(isinstance(dfs, Result))
self.assertTrue(isinstance(theframe, pd.DataFrame))
self.assertTrue(theframe['hi'][0] == 1)
listres = traj.f_get('mylist')
listres = make_shared_result(listres, 0, trajectory=traj)
with StorageContextManager(traj):
self.assertTrue(listres[0][2] == 3)
listres[0][0] = 4
self.assertTrue(listres[0][0] == 4)
listres = make_ordinary_result(listres, 0, trajectory=traj)
traj = load_trajectory(name=trajname, filename=filename, load_all=2,
dynamic_imports=SharedResult)
mylist = traj.mylist
self.assertTrue(isinstance(listres, Result))
self.assertTrue(mylist[0] == 4)
self.assertTrue(isinstance(mylist, list))
mytuple = traj.mytuple
with self.assertRaises(AttributeError):
mytuple = make_shared_result(mytuple, 'mylist', traj, new_class=SharedArray)
mytuple = make_shared_result(mytuple, 'k', traj, new_class=SharedArray)
self.assertTrue(mytuple.k[1] == 2)
mytuple = make_ordinary_result(mytuple, 'k', trajectory=traj)
self.assertTrue(isinstance(mytuple.k, tuple))
self.assertTrue(mytuple.k[2] == 3)
myframe = traj.myframe
myframe = make_shared_result(myframe, 'data', traj)
#.........这里部分代码省略.........