当前位置: 首页>>代码示例>>Python>>正文


Python Trajectory.f_get方法代码示例

本文整理汇总了Python中pypet.Trajectory.f_get方法的典型用法代码示例。如果您正苦于以下问题:Python Trajectory.f_get方法的具体用法?Python Trajectory.f_get怎么用?Python Trajectory.f_get使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pypet.Trajectory的用法示例。


在下文中一共展示了Trajectory.f_get方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_auto_load

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
    def test_auto_load(self):


        traj = Trajectory(name='Testautoload', filename=make_temp_dir('autoload.hdf5'))

        traj.v_auto_load = True

        traj.f_add_result('I.am.$.a.mean.resu', 42, comment='Test')

        traj.f_add_derived_parameter('ffa', 42)

        traj.f_store()

        ffa=traj.f_get('ffa')
        ffa.f_unlock()
        ffa.f_empty()

        self.assertTrue(ffa.f_is_empty())

        traj.f_remove_child('results', recursive=True)

        # check auto load
        val = traj.res.I.am.crun.a.mean.resu

        self.assertTrue(val==42)

        val = traj.ffa

        self.assertTrue(val==42)

        with self.assertRaises(pex.DataNotInStorageError):
            traj.kdsfdsf
开发者ID:henribunting,项目名称:pypet,代码行数:34,代码来源:storage_test.py

示例2: main

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
def main():

    filename = os.path.join('hdf5', 'Clustered_Network.hdf5')
    # If we pass a filename to the trajectory a new HDF5StorageService will
    # be automatically created
    traj = Trajectory(filename=filename,
                    dynamically_imported_classes=[BrianMonitorResult,
                                                  BrianParameter])

    # Let's create and fake environment to enable logging:
    env = Environment(traj, do_single_runs=False)


    # Load the trajectory, but onyl laod the skeleton of the results
    traj.f_load(index=-1, load_parameters=2, load_derived_parameters=2, load_results=1)

    # Find the result instances related to the fano factor
    fano_dict = traj.f_get_from_runs('mean_fano_factor', fast_access=False)

    # Load the data of the fano factor results
    ffs = fano_dict.values()
    traj.f_load_items(ffs)

    # Extract all values and R_ee values for each run
    ffs_values = [x.f_get() for x in ffs]
    Rees = traj.f_get('R_ee').f_get_range()

    # Plot average fano factor as a function of R_ee
    plt.plot(Rees, ffs_values)
    plt.xlabel('R_ee')
    plt.ylabel('Avg. Fano Factor')
    plt.show()

    # Finally disable logging and close all log-files
    env.disable_logging()
开发者ID:MehmetTimur,项目名称:pypet,代码行数:37,代码来源:plotff.py

示例3: test_find_in_all_runs_with_links

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
    def test_find_in_all_runs_with_links(self):

        traj = Trajectory()

        traj.f_add_parameter('FloatParam')
        traj.par.FloatParam=4.0
        self.explore_dict = {'FloatParam':[1.0,1.1,1.2,1.3]}
        traj.f_explore(self.explore_dict)

        self.assertTrue(len(traj) == 4)

        traj.f_add_result('results.runs.run_00000000.sub.resulttest', 42)
        traj.f_add_result('results.runs.run_00000001.sub.resulttest', 43)
        traj.f_add_result('results.runs.run_00000002.sub.resulttest', 44)

        traj.f_add_result('results.runs.run_00000002.sub.resulttest2', 42)
        traj.f_add_result('results.runs.run_00000003.sub.resulttest2', 43)

        traj.f_add_derived_parameter('derived_parameters.runs.run_00000002.testing', 44)

        res_dict = traj.f_get_from_runs('resulttest', fast_access=True)

        self.assertTrue(len(res_dict)==3)
        self.assertTrue(res_dict['run_00000001']==43)
        self.assertTrue('run_00000003' not in res_dict)

        res_dict = traj.f_get_from_runs(name='sub.resulttest2', use_indices=True)

        self.assertTrue(len(res_dict)==2)
        self.assertTrue(res_dict[3] is traj.f_get('run_00000003.resulttest2'))
        self.assertTrue(1 not in res_dict)

        traj.res.runs.r_0.f_add_link('resulttest2', traj.r_1.f_get('resulttest'))

        res_dict = traj.f_get_from_runs(name='resulttest2', use_indices=True)

        self.assertTrue(len(res_dict)==3)
        self.assertTrue(res_dict[0] is traj.f_get('run_00000001.resulttest'))
        self.assertTrue(1 not in res_dict)

        res_dict = traj.f_get_from_runs(name='resulttest2', use_indices=True, with_links=False)

        self.assertTrue(len(res_dict)==2)
        self.assertTrue(0 not in res_dict)
        self.assertTrue(1 not in res_dict)
开发者ID:MehmetTimur,项目名称:pypet,代码行数:47,代码来源:link_test.py

示例4: test_not_getting_links

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
    def test_not_getting_links(self):
        traj = Trajectory()

        traj.f_add_parameter_group('test.test3')
        traj.f_add_parameter_group('test2')

        traj.test.f_add_link('circle1' , traj.test2)
        traj.test2.f_add_link('circle2' , traj.test)

        self.assertTrue(traj.test.circle1 is traj.test2)

        traj.v_with_links = False

        with self.assertRaises(AttributeError):
            traj.test.circle1

        found = False
        for item in traj.test.f_iter_nodes(recursive=True, with_links=True):
            if item is traj.test2:
                found=True

        self.assertTrue(found)

        for item in traj.test.f_iter_nodes(recursive=True, with_links=False):
            if item is traj.test2:
                self.assertTrue(False)

        traj.v_with_links=True
        self.assertTrue('circle1' in traj)
        self.assertFalse(traj.f_contains('circle1', with_links=False))

        self.assertTrue('circle1' in traj.test)
        self.assertFalse(traj.test.f_contains('circle1', with_links=False))

        self.assertTrue(traj.test2.test3 is traj.par.test.test3)
        traj.v_with_links = False
        with self.assertRaises(AttributeError):
            traj.test2.test3

        traj.v_with_links = True
        self.assertTrue(traj['test2.test3'] is traj.test3)

        with self.assertRaises(AttributeError):
            traj.f_get('test2.test3', with_links=False)
开发者ID:MehmetTimur,项目名称:pypet,代码行数:46,代码来源:link_test.py

示例5: test_loading_explored_parameters

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
    def test_loading_explored_parameters(self):

        filename = make_temp_dir('load_explored.hdf5')
        traj = Trajectory(filename=filename, overwrite_file=True, add_time=False)
        traj.par.x = Parameter('x', 42, comment='answer')
        traj.f_explore({'x':[1,2,3,4]})
        traj.f_store()
        name = traj.v_name

        traj = Trajectory(filename=filename, add_time=False)
        traj.f_load()
        x = traj.f_get('x')
        self.assertIs(x, traj._explored_parameters['parameters.x'])
开发者ID:henribunting,项目名称:pypet,代码行数:15,代码来源:storage_test.py

示例6: test_shortenings_of_names

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
    def test_shortenings_of_names(self):
        traj = Trajectory(filename=make_temp_dir('testshortening.hdf5'))
        traj.f_aconf('g', 444)
        self.assertTrue(isinstance(traj.f_get('g'), Parameter))
        self.assertTrue(traj.conf.g == 444)

        traj.f_apar('g', 444)
        self.assertTrue(isinstance(traj.par.f_get('g'), Parameter))
        self.assertTrue(traj.par.g == 444)

        traj.f_adpar('g', 445)
        self.assertTrue(isinstance(traj.derived_parameters.f_get('g'), Parameter))
        self.assertTrue(traj.dpar.g == 445)

        traj.f_ares('g', 454)
        self.assertTrue(isinstance(traj.res.f_get('g'), Result))
        self.assertTrue(traj.res.g == 454)
开发者ID:henribunting,项目名称:pypet,代码行数:19,代码来源:storage_test.py

示例7: print

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
# And you can add a new parameter via
traj.parameters.u = 1, 'Fourth dimension'
print('u=' + str(traj.u))
# However, now you can no longer change values of existing parameters,
# because this is interpreted as a new parameter addition, so this fails:
try:
    traj.parameters.u = 2
    print('I won`t be reached')
except AttributeError as exc:
    print('Told you: `%s`' % repr(exc))
# See:
print('u=' + str(traj.par.u))

# But disabling the new adding method makes this work again
traj.v_lazy_adding = False
traj.f_get('u').f_unlock()
traj.parameters.u = 3
# now we simply change `u` to be 3

# There's also a lazy version to add new group nodes:
from pypet import new_group
traj.v_lazy_adding=True
traj.im_new = new_group
# And `im_new` is a new group node:
print(traj.im_new)


# Finally, there's one more thing. Using this notation we can also add links.
# Simply use the `=` assignment with objects that already exist in your trajectory:
traj.mylink = traj.f_get('x')
# now `mylink` links to parameter `x`, also fast access works:
开发者ID:henribunting,项目名称:pypet,代码行数:33,代码来源:example_15_more_ways_to_add_data.py

示例8: test_conversions

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
    def test_conversions(self):
        filename = make_temp_dir("hdf5manipulation.hdf5")
        traj = Trajectory(name=make_trajectory_name(self), filename=filename)

        trajname = traj.v_name
        traj.v_standard_result = SharedResult

        traj.f_store(only_init=True)

        traj.f_add_result("shared_data")

        thedata = np.zeros((1000, 1000))
        myarray = SharedArray("array", traj.shared_data, trajectory=traj)
        traj.shared_data["array"] = myarray
        mytable = SharedTable("t1", traj.shared_data, trajectory=traj)
        traj.shared_data["t1"] = mytable
        # mytable2 = SharedTableResult('h.t2', trajectory=traj)
        # mytable3 = SharedTableResult('jjj.t3', trajectory=traj)
        dadict = {"hi": [1, 2, 3, 4, 5], "shu": ["bi", "du", "da", "ha", "hui"]}
        dadict2 = {"answer": [42]}
        res = traj.f_add_result("shared.dfs")
        res["df"] = SharedPandasFrame()
        res["df"].create_shared_data(data=pd.DataFrame(dadict), trajectory=traj)
        frame = SharedPandasFrame("df1", traj.f_get("shared.dfs"), trajectory=traj)
        frame.create_shared_data(data=pd.DataFrame(dadict2))
        res["df1"] = frame

        traj.f_add_result("mylist", [1, 2, 3])
        traj.f_add_result("my.mytuple", k=(1, 2, 3), wa=42)
        traj.f_add_result("my.myarray", np.zeros((50, 50)))
        traj.f_add_result("my.myframe", data=pd.DataFrame(dadict2))
        traj.f_add_result("my.mytable", ObjectTable(data=dadict2))

        myarray.create_shared_data(data=thedata)
        mytable.create_shared_data(first_row={"hi": compat.tobytes("hi"), "huhu": np.ones(3)})

        traj.f_store()

        data = myarray.read()
        arr = myarray.get_data_node()
        self.assertTrue(np.all(data == thedata))

        with StorageContextManager(traj) as cm:
            myarray[2, 2] = 10
            data = myarray.read()
            self.assertTrue(data[2, 2] == 10)

        self.assertTrue(data[2, 2] == 10)
        self.assertFalse(traj.v_storage_service.is_open)

        traj = load_trajectory(name=trajname, filename=filename, load_all=2, dynamic_imports=SharedResult)

        make_ordinary_result(traj.shared_data, "array", trajectory=traj)
        array = traj.shared_data.array
        self.assertTrue(isinstance(array, np.ndarray))
        thedata[2, 2] = 10
        self.assertTrue(np.all(array == thedata))

        make_ordinary_result(traj.shared_data, "t1", trajectory=traj)
        t1 = traj.shared_data.t1
        self.assertTrue(isinstance(t1, ObjectTable))  #
        self.assertTrue(np.all(t1["huhu"][0] == np.ones(3)))

        dfs = traj.shared.dfs
        make_ordinary_result(traj.shared.dfs, "df", trajectory=traj)
        theframe = dfs.f_get("df")
        self.assertTrue(isinstance(dfs, Result))
        self.assertTrue(isinstance(theframe, pd.DataFrame))
        self.assertTrue(theframe["hi"][0] == 1)

        listres = traj.f_get("mylist")
        listres = make_shared_result(listres, 0, trajectory=traj)
        with StorageContextManager(traj) as cm:
            self.assertTrue(listres[0][2] == 3)
            listres[0][0] = 4

        self.assertTrue(listres[0][0] == 4)
        listres = make_ordinary_result(listres, 0, trajectory=traj)
        traj = load_trajectory(name=trajname, filename=filename, load_all=2, dynamic_imports=SharedResult)
        mylist = traj.mylist
        self.assertTrue(isinstance(listres, Result))
        self.assertTrue(mylist[0] == 4)
        self.assertTrue(isinstance(mylist, list))

        mytuple = traj.mytuple

        with self.assertRaises(AttributeError):
            mytuple = make_shared_result(mytuple, "mylist", traj, new_class=SharedArray)

        mytuple = make_shared_result(mytuple, "k", traj, new_class=SharedArray)
        self.assertTrue(mytuple.k[1] == 2)

        mytuple = make_ordinary_result(mytuple, "k", trajectory=traj)
        self.assertTrue(isinstance(mytuple.k, tuple))
        self.assertTrue(mytuple.k[2] == 3)

        myframe = traj.myframe
        myframe = make_shared_result(myframe, "data", traj)

        theframe = myframe.data.read()
#.........这里部分代码省略.........
开发者ID:MehmetTimur,项目名称:pypet,代码行数:103,代码来源:shared_data_test.py

示例9: Trajectory

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
from pypet import Trajectory, Result, Parameter


traj = Trajectory()

# There are more ways to add data,
# 1st the standard way:
traj.f_add_parameter('x', 1, comment='I am the first dimension!')
# 2nd by providing a new parameter/result instance, be aware that the data is added where
# you specify it. There are no such things as shortcuts for parameter creation:
traj.parameters.y = Parameter('y', 1, comment='I am the second dimension!')
# 3rd as before, but if our new leaf has NO name it will be renamed accordingly:
traj.parameters.t = Parameter('', 1, comment='Third dimension')
# See:
print('t=' + str(traj.t))

# This also works for adding groups on the fly and with the well known *dot* notation:
traj.parameters.subgroup = Parameter('subgroup.subsubgroup.w', 2)
# See
print('w='+str(traj.par.subgroup.subsubgroup.w))


# Finally, there's one more thing. Using this notation we can also add links.
# Simply use the `=` assignment with objects that already exist in your trajectory:
traj.mylink = traj.f_get('x')
# now `mylink` links to parameter `x`, also fast access works:
print('Linking to x gives: ' + str(traj.mylink))


开发者ID:SmokinCaterpillar,项目名称:pypet,代码行数:29,代码来源:example_15_more_ways_to_add_data.py

示例10: main

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
def main():

    filename = os.path.join('hdf5', 'example_05.hdf5')
    env = Environment(trajectory='Example_05_Euler_Integration',
                      filename=filename,
                      file_title='Example_05_Euler_Integration',
                      comment='Go for Euler!')


    traj = env.v_trajectory
    trajectory_name = traj.v_name

    # 1st a) phase parameter addition
    add_parameters(traj)

    # 1st b) phase preparation
    # We will add the differential equation (well, its source code only) as a derived parameter
    traj.f_add_derived_parameter(FunctionParameter,'diff_eq', diff_lorenz,
                                 comment='Source code of our equation!')

    # We want to explore some initial conditions
    traj.f_explore({'initial_conditions' : [
        np.array([0.01,0.01,0.01]),
        np.array([2.02,0.02,0.02]),
        np.array([42.0,4.2,0.42])
    ]})
    # 3 different conditions are enough for an illustrative example

    # 2nd phase let's run the experiment
    # We pass `euler_scheme` as our top-level simulation function and
    # the Lorenz equation 'diff_lorenz' as an additional argument
    env.f_run(euler_scheme, diff_lorenz)

    # We don't have a 3rd phase of post-processing here

    # 4th phase analysis.
    # I would recommend to do post-processing completely independent from the simulation,
    # but for simplicity let's do it here.

    # Let's assume that we start all over again and load the entire trajectory new.
    # Yet, there is an error within this approach, do you spot it?
    del traj
    traj = Trajectory(filename=filename)

    # We will only fully load parameters and derived parameters.
    # Results will be loaded manually later on.
    try:
        # However, this will fail because our trajectory does not know how to
        # build the FunctionParameter. You have seen this coming, right?
        traj.f_load(name=trajectory_name, load_parameters=2, load_derived_parameters=2,
                    load_results=1)
    except ImportError as e:

        print('That did\'nt work, I am sorry: %s ' % str(e))

        # Ok, let's try again but this time with adding our parameter to the imports
        traj = Trajectory(filename=filename,
                           dynamically_imported_classes=FunctionParameter)

        # Now it works:
        traj.f_load(name=trajectory_name, load_parameters=2, load_derived_parameters=2,
                    load_results=1)


    #For the fun of it, let's print the source code
    print('\n ---------- The source code of your function ---------- \n %s' % traj.diff_eq)

    # Let's get the exploration array:
    initial_conditions_exploration_array = traj.f_get('initial_conditions').f_get_range()
    # Now let's plot our simulated equations for the different initial conditions:
    # We will iterate through the run names
    for idx, run_name in enumerate(traj.f_get_run_names()):

        #Get the result of run idx from the trajectory
        euler_result = traj.results.f_get(run_name).euler_evolution
        # Now we manually need to load the result. Actually the results are not so large and we
        # could load them all at once. But for demonstration we do as if they were huge:
        traj.f_load_item(euler_result)
        euler_data = euler_result.data

        #Plot fancy 3d plot
        fig = plt.figure(idx)
        ax = fig.gca(projection='3d')
        x = euler_data[:,0]
        y = euler_data[:,1]
        z = euler_data[:,2]
        ax.plot(x, y, z, label='Initial Conditions: %s' % str(initial_conditions_exploration_array[idx]))
        plt.legend()
        plt.show()

        # Now we free the data again (because we assume its huuuuuuge):
        del euler_data
        euler_result.f_empty()

    # You have to click through the images to stop the example_05 module!

    # Finally disable logging and close all log-files
    env.f_disable_logging()
开发者ID:henribunting,项目名称:pypet,代码行数:100,代码来源:example_05_custom_parameter.py

示例11: Trajectory

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
traj = Trajectory('Example', filename=filename,
                  comment='Access and Storage!')


# We add our first parameter with the data 'Harrison Ford'
traj.f_add_parameter('starwars.characters.han_solo', 'Harrison Ford')

# This automatically added the groups 'starwars' and the subgroup 'characters'
# Let's get the characters subgroup
characters = traj.parameters.starwars.characters

# Since characters is unique we could also use shortcuts
characters = traj.characters

# Or the get method
characters = traj.f_get('characters')

# Or square brackets
characters = traj['characters']

# Lets add another character
characters.f_add_parameter('luke_skywalker', 'Mark Hamill', comment='May the force be with you!')

#The full name of luke skywalker is now `parameters.starwars.characters.luke_skywalker`:
print('The full name of the new Skywalker Parameter is %s' %
      traj.f_get('luke_skywalker').v_full_name)

#Lets see what happens if we have not unique entries:
traj.f_add_parameter_group('spaceballs.characters')

# Now our shortcuts no longer work, since we have two character groups!
开发者ID:henribunting,项目名称:pypet,代码行数:33,代码来源:example_02_trajectory_access_and_storage.py

示例12: test_new_assignment_method

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
    def test_new_assignment_method(self):
        filename = make_temp_dir('newassignment.hdf5')
        traj = Trajectory(filename=filename)

        traj.v_lazy_adding = True
        comment = 'A number'
        traj.par.x = 44, comment

        self.assertTrue(traj.f_get('x').v_comment == comment)

        traj.par.iamgroup = a_new_group

        self.assertTrue(isinstance(traj.iamgroup, ParameterGroup))

        traj.v_lazy_adding = False
        traj.x = 45
        self.assertTrue(traj.par.f_get('x').f_get() == 45)

        self.assertTrue(isinstance(traj.f_get('x'), Parameter))

        traj.f = Parameter('lll', 444, 'lll')

        self.assertTrue(traj.f_get('f').v_name == 'f')

        traj.v_lazy_adding = True
        traj.res.k = 22, 'Hi'
        self.assertTrue(isinstance(traj.f_get('k'), Result))
        self.assertTrue(traj.f_get('k')[1] == 'Hi')

        with self.assertRaises(AttributeError):
            traj.res.k = 33, 'adsd'

        conf = traj.conf
        with self.assertRaises(AttributeError):
            conf = traj.conf.jjjj
        traj.f_set_properties(fast_access=True)


        traj.crun = 43, 'JJJ'
        self.assertTrue(traj.run_A[0] == 43)

        with self.assertRaises(AttributeError):
            traj.f_set_properties(j=7)

        with self.assertRaises(AttributeError):
            traj.f_set_properties(depth=7)

        traj.hui = (('444', 'kkkk',), 'l')



        self.assertTrue(traj.f_get('hui')[1] == 'l')

        with self.assertRaises(AttributeError):
            traj.hui = ('445', 'kkkk',)

        traj.f_get('hui').f_set(('445', 'kkkk',))

        self.assertTrue(traj.f_get('hui')[1] == 'l')

        self.assertTrue(traj.hui[0] == ('445', 'kkkk',))

        traj.f_add_link('klkikju', traj.par) # for shizzle


        traj.meee = Result('h', 43, hui = 3213, comment='du')

        self.assertTrue(traj.meee.h.h == 43)

        with self.assertRaises(TypeError):
            traj.par.mu = NNGroupNode('jj', comment='mi')
        with self.assertRaises(TypeError):
            traj.res.mu = NNGroupNode('jj', comment='mi')
        with self.assertRaises(TypeError):
            traj.conf.mu = NNGroupNode('jj', comment='mi')
        with self.assertRaises(TypeError):
            traj.dpar.mu = NNGroupNode('jj', comment='mi')

        with self.assertRaises(TypeError):
            traj.par.mu = ResultGroup('jj', comment='mi')
        with self.assertRaises(TypeError):
            traj.dpar.mu = ResultGroup('jj', comment='mi')
        with self.assertRaises(TypeError):
            traj.conf.mu = ResultGroup('jj', comment='mi')
        with self.assertRaises(TypeError):
            traj.mu = ResultGroup('jj', comment='mi')

        with self.assertRaises(TypeError):
            traj.par.mu = ConfigGroup('jj', comment='mi')
        with self.assertRaises(TypeError):
            traj.dpar.mu = ConfigGroup('jj', comment='mi')
        with self.assertRaises(TypeError):
            traj.res.mu = ConfigGroup('jj', comment='mi')
        with self.assertRaises(TypeError):
            traj.mu = ConfigGroup('jj', comment='mi')

        with self.assertRaises(TypeError):
            traj.par.mu = DerivedParameterGroup('jj', comment='mi')
        with self.assertRaises(TypeError):
            traj.conf.mu = DerivedParameterGroup('jj', comment='mi')
#.........这里部分代码省略.........
开发者ID:henribunting,项目名称:pypet,代码行数:103,代码来源:storage_test.py

示例13: my_filter_function

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
# In[ ]:

traj.f_get_run_names()


# In[ ]:

def my_filter_function(location,dt):
    result = location =='mars' and dt=1e-2
    return result


# In[ ]:

set(traj.f_get('incline').f_get_range())


# In[ ]:

def filter_function(loc,dt,vmax,vent_radius,incline):
    result = loc=='mars' and dt==1e-2 and vmax==50        and vent_radius==0.5 and incline==1.0
    return result


# In[ ]:

def standard_filter(loc, dt, jitter, incline):
    result = loc=='mars' and dt==1e-2 and jitter==0.1 and incline!=10.0
    return result
开发者ID:michaelaye,项目名称:planet4,代码行数:31,代码来源:2016-02-19+pypet+analysis.py

示例14: test_conversions

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_get [as 别名]
    def test_conversions(self):
        filename = make_temp_dir('hdf5manipulation.hdf5')
        traj = Trajectory(name=make_trajectory_name(self), filename=filename)

        trajname = traj.v_name
        traj.v_standard_result = SharedResult

        traj.f_store(only_init=True)

        traj.f_add_result('shared_data')

        thedata = np.zeros((1000, 1000))
        myarray = SharedArray('array', traj.shared_data, trajectory=traj)
        traj.shared_data['array'] = myarray
        mytable = SharedTable('t1', traj.shared_data, trajectory=traj)
        traj.shared_data['t1'] = mytable
        dadict = {'hi': [1, 2, 3, 4, 5], 'shu': ['bi', 'du', 'da', 'ha', 'hui']}
        dadict2 = {'answer': [42]}
        res = traj.f_add_result('shared.dfs')
        res['df'] = SharedPandasFrame()
        res['df'].create_shared_data(data=pd.DataFrame(dadict), trajectory=traj)
        frame = SharedPandasFrame('df1', traj.f_get('shared.dfs'), trajectory=traj,
                                  add_to_parent=True)
        frame.create_shared_data(data=pd.DataFrame(dadict2),)
        res['df1'] = frame

        traj.f_add_result('mylist', [1, 2, 3])
        traj.f_add_result('my.mytuple', k=(1, 2, 3), wa=42)
        traj.f_add_result('my.myarray', np.zeros((50, 50)))
        traj.f_add_result('my.myframe', data=pd.DataFrame(dadict2))
        traj.f_add_result('my.mytable', ObjectTable(data=dadict2))

        myarray.create_shared_data(data=thedata)
        mytable.create_shared_data(first_row={'hi': compat.tobytes('hi'), 'huhu': np.ones(3)})

        traj.f_store()

        data = myarray.read()
        myarray.get_data_node()
        self.assertTrue(np.all(data == thedata))

        with StorageContextManager(traj):
            myarray[2, 2] = 10
            data = myarray.read()
            self.assertTrue(data[2, 2] == 10)

        self.assertTrue(data[2, 2] == 10)
        self.assertFalse(traj.v_storage_service.is_open)

        traj = load_trajectory(name=trajname, filename=filename, load_all=2,
                               dynamic_imports=SharedResult)

        make_ordinary_result(traj.shared_data, 'array', trajectory=traj)
        array = traj.shared_data.array
        self.assertTrue(isinstance(array, np.ndarray))
        thedata[2, 2] = 10
        self.assertTrue(np.all(array == thedata))

        make_ordinary_result(traj.shared_data, 't1', trajectory=traj,)
        t1 = traj.shared_data.t1
        self.assertTrue(isinstance(t1, ObjectTable))
        self.assertTrue(np.all(t1['huhu'][0] == np.ones(3)))

        dfs = traj.shared.dfs
        make_ordinary_result(traj.shared.dfs, 'df', trajectory=traj)
        theframe = dfs.f_get('df')
        self.assertTrue(isinstance(dfs, Result))
        self.assertTrue(isinstance(theframe, pd.DataFrame))
        self.assertTrue(theframe['hi'][0] == 1)

        listres = traj.f_get('mylist')
        listres = make_shared_result(listres, 0, trajectory=traj)
        with StorageContextManager(traj):
            self.assertTrue(listres[0][2] == 3)
            listres[0][0] = 4

        self.assertTrue(listres[0][0] == 4)
        listres = make_ordinary_result(listres, 0, trajectory=traj)
        traj = load_trajectory(name=trajname, filename=filename, load_all=2,
                               dynamic_imports=SharedResult)
        mylist = traj.mylist
        self.assertTrue(isinstance(listres, Result))
        self.assertTrue(mylist[0] == 4)
        self.assertTrue(isinstance(mylist, list))

        mytuple = traj.mytuple

        with self.assertRaises(AttributeError):
            mytuple = make_shared_result(mytuple, 'mylist', traj, new_class=SharedArray)

        mytuple = make_shared_result(mytuple, 'k', traj, new_class=SharedArray)
        self.assertTrue(mytuple.k[1] == 2)

        mytuple = make_ordinary_result(mytuple, 'k', trajectory=traj)
        self.assertTrue(isinstance(mytuple.k, tuple))
        self.assertTrue(mytuple.k[2] == 3)

        myframe = traj.myframe
        myframe = make_shared_result(myframe, 'data', traj)

#.........这里部分代码省略.........
开发者ID:femtotrader,项目名称:pypet,代码行数:103,代码来源:shared_data_test.py


注:本文中的pypet.Trajectory.f_get方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。