当前位置: 首页>>代码示例>>Python>>正文


Python Trajectory.f_load_item方法代码示例

本文整理汇总了Python中pypet.Trajectory.f_load_item方法的典型用法代码示例。如果您正苦于以下问题:Python Trajectory.f_load_item方法的具体用法?Python Trajectory.f_load_item怎么用?Python Trajectory.f_load_item使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pypet.Trajectory的用法示例。


在下文中一共展示了Trajectory.f_load_item方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_partial_loading

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_load_item [as 别名]
    def test_partial_loading(self):
        traj = Trajectory(name='TestPartial', filename=make_temp_dir('testpartially.hdf5'))

        res = traj.f_add_result('mytest.test', a='b', c='d')

        traj.f_store()

        traj.f_remove_child('results', recursive=True)

        traj.f_load_skeleton()

        traj.f_load_item(traj.test, load_only=['a', 'x'])

        self.assertTrue('a' in traj.test)
        self.assertTrue('c' not in traj.test)

        traj.f_remove_child('results', recursive=True)

        traj.f_load_skeleton()

        load_except= ['c', 'd']
        traj.f_load_item(traj.test, load_except=load_except)

        self.assertTrue(len(load_except)==2)

        self.assertTrue('a' in traj.test)
        self.assertTrue('c' not in traj.test)

        with self.assertRaises(ValueError):
            traj.f_load_item(traj.test, load_except=['x'], load_only=['y'])
开发者ID:henribunting,项目名称:pypet,代码行数:32,代码来源:storage_test.py

示例2: test_conversions

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_load_item [as 别名]

#.........这里部分代码省略.........
        dadict = {"hi": [1, 2, 3, 4, 5], "shu": ["bi", "du", "da", "ha", "hui"]}
        dadict2 = {"answer": [42]}
        res = traj.f_add_result("shared.dfs")
        res["df"] = SharedPandasFrame()
        res["df"].create_shared_data(data=pd.DataFrame(dadict), trajectory=traj)
        frame = SharedPandasFrame("df1", traj.f_get("shared.dfs"), trajectory=traj)
        frame.create_shared_data(data=pd.DataFrame(dadict2))
        res["df1"] = frame

        traj.f_add_result("mylist", [1, 2, 3])
        traj.f_add_result("my.mytuple", k=(1, 2, 3), wa=42)
        traj.f_add_result("my.myarray", np.zeros((50, 50)))
        traj.f_add_result("my.myframe", data=pd.DataFrame(dadict2))
        traj.f_add_result("my.mytable", ObjectTable(data=dadict2))

        myarray.create_shared_data(data=thedata)
        mytable.create_shared_data(first_row={"hi": compat.tobytes("hi"), "huhu": np.ones(3)})

        traj.f_store()

        data = myarray.read()
        arr = myarray.get_data_node()
        self.assertTrue(np.all(data == thedata))

        with StorageContextManager(traj) as cm:
            myarray[2, 2] = 10
            data = myarray.read()
            self.assertTrue(data[2, 2] == 10)

        self.assertTrue(data[2, 2] == 10)
        self.assertFalse(traj.v_storage_service.is_open)

        traj = load_trajectory(name=trajname, filename=filename, load_all=2, dynamic_imports=SharedResult)

        make_ordinary_result(traj.shared_data, "array", trajectory=traj)
        array = traj.shared_data.array
        self.assertTrue(isinstance(array, np.ndarray))
        thedata[2, 2] = 10
        self.assertTrue(np.all(array == thedata))

        make_ordinary_result(traj.shared_data, "t1", trajectory=traj)
        t1 = traj.shared_data.t1
        self.assertTrue(isinstance(t1, ObjectTable))  #
        self.assertTrue(np.all(t1["huhu"][0] == np.ones(3)))

        dfs = traj.shared.dfs
        make_ordinary_result(traj.shared.dfs, "df", trajectory=traj)
        theframe = dfs.f_get("df")
        self.assertTrue(isinstance(dfs, Result))
        self.assertTrue(isinstance(theframe, pd.DataFrame))
        self.assertTrue(theframe["hi"][0] == 1)

        listres = traj.f_get("mylist")
        listres = make_shared_result(listres, 0, trajectory=traj)
        with StorageContextManager(traj) as cm:
            self.assertTrue(listres[0][2] == 3)
            listres[0][0] = 4

        self.assertTrue(listres[0][0] == 4)
        listres = make_ordinary_result(listres, 0, trajectory=traj)
        traj = load_trajectory(name=trajname, filename=filename, load_all=2, dynamic_imports=SharedResult)
        mylist = traj.mylist
        self.assertTrue(isinstance(listres, Result))
        self.assertTrue(mylist[0] == 4)
        self.assertTrue(isinstance(mylist, list))

        mytuple = traj.mytuple

        with self.assertRaises(AttributeError):
            mytuple = make_shared_result(mytuple, "mylist", traj, new_class=SharedArray)

        mytuple = make_shared_result(mytuple, "k", traj, new_class=SharedArray)
        self.assertTrue(mytuple.k[1] == 2)

        mytuple = make_ordinary_result(mytuple, "k", trajectory=traj)
        self.assertTrue(isinstance(mytuple.k, tuple))
        self.assertTrue(mytuple.k[2] == 3)

        myframe = traj.myframe
        myframe = make_shared_result(myframe, "data", traj)

        theframe = myframe.data.read()
        self.assertTrue(theframe["answer"][0] == 42)

        myframe = make_ordinary_result(myframe, "data", trajectory=traj)
        traj.f_load_item(myframe)
        self.assertTrue(myframe.data["answer"][0] == 42)

        mytable = traj.f_get("mytable")
        mytable = make_shared_result(mytable, 0, traj)

        self.assertTrue(isinstance(mytable[0], SharedTable))
        rows = mytable.mytable.read()

        self.assertTrue(rows[0][0] == 42)

        mytable = make_ordinary_result(mytable, 0, trajectory=traj)

        self.assertTrue(isinstance(mytable, Result))
        self.assertTrue(mytable[0]["answer"][0] == 42)
开发者ID:MehmetTimur,项目名称:pypet,代码行数:104,代码来源:shared_data_test.py

示例3: main

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_load_item [as 别名]
def main():

    filename = os.path.join('hdf5', 'example_05.hdf5')
    env = Environment(trajectory='Example_05_Euler_Integration',
                      filename=filename,
                      file_title='Example_05_Euler_Integration',
                      comment='Go for Euler!')


    traj = env.v_trajectory
    trajectory_name = traj.v_name

    # 1st a) phase parameter addition
    add_parameters(traj)

    # 1st b) phase preparation
    # We will add the differential equation (well, its source code only) as a derived parameter
    traj.f_add_derived_parameter(FunctionParameter,'diff_eq', diff_lorenz,
                                 comment='Source code of our equation!')

    # We want to explore some initial conditions
    traj.f_explore({'initial_conditions' : [
        np.array([0.01,0.01,0.01]),
        np.array([2.02,0.02,0.02]),
        np.array([42.0,4.2,0.42])
    ]})
    # 3 different conditions are enough for an illustrative example

    # 2nd phase let's run the experiment
    # We pass `euler_scheme` as our top-level simulation function and
    # the Lorenz equation 'diff_lorenz' as an additional argument
    env.f_run(euler_scheme, diff_lorenz)

    # We don't have a 3rd phase of post-processing here

    # 4th phase analysis.
    # I would recommend to do post-processing completely independent from the simulation,
    # but for simplicity let's do it here.

    # Let's assume that we start all over again and load the entire trajectory new.
    # Yet, there is an error within this approach, do you spot it?
    del traj
    traj = Trajectory(filename=filename)

    # We will only fully load parameters and derived parameters.
    # Results will be loaded manually later on.
    try:
        # However, this will fail because our trajectory does not know how to
        # build the FunctionParameter. You have seen this coming, right?
        traj.f_load(name=trajectory_name, load_parameters=2, load_derived_parameters=2,
                    load_results=1)
    except ImportError as e:

        print('That did\'nt work, I am sorry: %s ' % str(e))

        # Ok, let's try again but this time with adding our parameter to the imports
        traj = Trajectory(filename=filename,
                           dynamically_imported_classes=FunctionParameter)

        # Now it works:
        traj.f_load(name=trajectory_name, load_parameters=2, load_derived_parameters=2,
                    load_results=1)


    #For the fun of it, let's print the source code
    print('\n ---------- The source code of your function ---------- \n %s' % traj.diff_eq)

    # Let's get the exploration array:
    initial_conditions_exploration_array = traj.f_get('initial_conditions').f_get_range()
    # Now let's plot our simulated equations for the different initial conditions:
    # We will iterate through the run names
    for idx, run_name in enumerate(traj.f_get_run_names()):

        #Get the result of run idx from the trajectory
        euler_result = traj.results.f_get(run_name).euler_evolution
        # Now we manually need to load the result. Actually the results are not so large and we
        # could load them all at once. But for demonstration we do as if they were huge:
        traj.f_load_item(euler_result)
        euler_data = euler_result.data

        #Plot fancy 3d plot
        fig = plt.figure(idx)
        ax = fig.gca(projection='3d')
        x = euler_data[:,0]
        y = euler_data[:,1]
        z = euler_data[:,2]
        ax.plot(x, y, z, label='Initial Conditions: %s' % str(initial_conditions_exploration_array[idx]))
        plt.legend()
        plt.show()

        # Now we free the data again (because we assume its huuuuuuge):
        del euler_data
        euler_result.f_empty()

    # You have to click through the images to stop the example_05 module!

    # Finally disable logging and close all log-files
    env.f_disable_logging()
开发者ID:henribunting,项目名称:pypet,代码行数:100,代码来源:example_05_custom_parameter.py

示例4: Trajectory

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_load_item [as 别名]
traj.f_add_result('starwars.gross_income_of_film', amount=10.1 ** 11, currency='$$$',
                  comment='George Lucas is rich, dude!')
# This is a large number, we better store it and than free the memory:
traj.f_store_item('gross_income_of_film')
traj.gross_income_of_film.f_empty()


# Now lets reload the trajectory
del traj
traj = Trajectory(filename=filename)
# We want to load the last trajectory in the file, therefore index = -1
# We want to load the parameters, therefore load_parameters=2
# We only want to load the skeleton of the results, so load_results=1
traj.f_load(index=-1, load_parameters=2, load_results=1)

# Let's check if our result is really empty
if traj.gross_income_of_film.f_is_empty():
    print('Nothing there!')
else:
    print('I found something!')

# Ok, let's manually reload the result
traj.f_load_item('gross_income_of_film')
if traj.gross_income_of_film.f_is_empty():
    print('Still empty :-(')
else:
    print('George Lucas earned %s%s!' %(str(traj.gross_income_of_film.amount),
                                         traj.gross_income_of_film.currency))

# And that's how it works! If you wish, you can inspect the
# experiments/example_02/HDF5/example_02.hdf5 file to take a look at the tree structure
开发者ID:henribunting,项目名称:pypet,代码行数:33,代码来源:example_02_trajectory_access_and_storage.py

示例5: test_conversions

# 需要导入模块: from pypet import Trajectory [as 别名]
# 或者: from pypet.Trajectory import f_load_item [as 别名]

#.........这里部分代码省略.........
        res['df'] = SharedPandasFrame()
        res['df'].create_shared_data(data=pd.DataFrame(dadict), trajectory=traj)
        frame = SharedPandasFrame('df1', traj.f_get('shared.dfs'), trajectory=traj,
                                  add_to_parent=True)
        frame.create_shared_data(data=pd.DataFrame(dadict2),)
        res['df1'] = frame

        traj.f_add_result('mylist', [1, 2, 3])
        traj.f_add_result('my.mytuple', k=(1, 2, 3), wa=42)
        traj.f_add_result('my.myarray', np.zeros((50, 50)))
        traj.f_add_result('my.myframe', data=pd.DataFrame(dadict2))
        traj.f_add_result('my.mytable', ObjectTable(data=dadict2))

        myarray.create_shared_data(data=thedata)
        mytable.create_shared_data(first_row={'hi': compat.tobytes('hi'), 'huhu': np.ones(3)})

        traj.f_store()

        data = myarray.read()
        myarray.get_data_node()
        self.assertTrue(np.all(data == thedata))

        with StorageContextManager(traj):
            myarray[2, 2] = 10
            data = myarray.read()
            self.assertTrue(data[2, 2] == 10)

        self.assertTrue(data[2, 2] == 10)
        self.assertFalse(traj.v_storage_service.is_open)

        traj = load_trajectory(name=trajname, filename=filename, load_all=2,
                               dynamic_imports=SharedResult)

        make_ordinary_result(traj.shared_data, 'array', trajectory=traj)
        array = traj.shared_data.array
        self.assertTrue(isinstance(array, np.ndarray))
        thedata[2, 2] = 10
        self.assertTrue(np.all(array == thedata))

        make_ordinary_result(traj.shared_data, 't1', trajectory=traj,)
        t1 = traj.shared_data.t1
        self.assertTrue(isinstance(t1, ObjectTable))
        self.assertTrue(np.all(t1['huhu'][0] == np.ones(3)))

        dfs = traj.shared.dfs
        make_ordinary_result(traj.shared.dfs, 'df', trajectory=traj)
        theframe = dfs.f_get('df')
        self.assertTrue(isinstance(dfs, Result))
        self.assertTrue(isinstance(theframe, pd.DataFrame))
        self.assertTrue(theframe['hi'][0] == 1)

        listres = traj.f_get('mylist')
        listres = make_shared_result(listres, 0, trajectory=traj)
        with StorageContextManager(traj):
            self.assertTrue(listres[0][2] == 3)
            listres[0][0] = 4

        self.assertTrue(listres[0][0] == 4)
        listres = make_ordinary_result(listres, 0, trajectory=traj)
        traj = load_trajectory(name=trajname, filename=filename, load_all=2,
                               dynamic_imports=SharedResult)
        mylist = traj.mylist
        self.assertTrue(isinstance(listres, Result))
        self.assertTrue(mylist[0] == 4)
        self.assertTrue(isinstance(mylist, list))

        mytuple = traj.mytuple

        with self.assertRaises(AttributeError):
            mytuple = make_shared_result(mytuple, 'mylist', traj, new_class=SharedArray)

        mytuple = make_shared_result(mytuple, 'k', traj, new_class=SharedArray)
        self.assertTrue(mytuple.k[1] == 2)

        mytuple = make_ordinary_result(mytuple, 'k', trajectory=traj)
        self.assertTrue(isinstance(mytuple.k, tuple))
        self.assertTrue(mytuple.k[2] == 3)

        myframe = traj.myframe
        myframe = make_shared_result(myframe, 'data', traj)

        theframe = myframe.data.read()
        self.assertTrue(theframe['answer'][0] == 42)

        myframe = make_ordinary_result(myframe, 'data', trajectory=traj)
        traj.f_load_item(myframe)
        self.assertTrue(myframe.data['answer'][0] == 42)

        mytable = traj.f_get('mytable')
        mytable = make_shared_result(mytable, 0, traj)

        self.assertTrue(isinstance(mytable[0], SharedTable))
        rows = mytable.mytable.read()

        self.assertTrue(rows[0][0] == 42)

        mytable = make_ordinary_result(mytable, 0, trajectory=traj)

        self.assertTrue(isinstance(mytable, Result))
        self.assertTrue(mytable[0]['answer'][0] == 42)
开发者ID:femtotrader,项目名称:pypet,代码行数:104,代码来源:shared_data_test.py


注:本文中的pypet.Trajectory.f_load_item方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。