本文整理汇总了Python中pymc.MCMC.use_step_method方法的典型用法代码示例。如果您正苦于以下问题:Python MCMC.use_step_method方法的具体用法?Python MCMC.use_step_method怎么用?Python MCMC.use_step_method使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pymc.MCMC
的用法示例。
在下文中一共展示了MCMC.use_step_method方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: analizeM
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import use_step_method [as 别名]
def analizeM():
M = MCMC(dm)
print("M: ", M)
M.sample(iter=10000, burn=1000, thin=10)
print("M t: ", M.trace('switchpoint')[:])
hist(M.trace('late_mean')[:])
# show()
plot(M)
# show()
print("M smd dm sp: ", M.step_method_dict[dm.switchpoint])
print("M smd dm em: ", M.step_method_dict[dm.early_mean])
print("M smd dm lm: ", M.step_method_dict[dm.late_mean])
M.use_step_method(Metropolis, dm.late_mean, proposal_sd=2.)
示例2: runMCMCmodel
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import use_step_method [as 别名]
#.........这里部分代码省略.........
mcmcParams=args['mcmcString']
surveyParams=args['surveyString']
priorParams=args['priorsString']
maxIter=int(mcmcParams[0])
burnIter=int(mcmcParams[1])
thinFactor=int(mcmcParams[2])
if surveyParams[5] == 'Inf':
magLim = np.Inf
else:
magLim = float(surveyParams[5])
S=U.UniformDistributionSingleLuminosity(int(surveyParams[0]), float(surveyParams[1]),
float(surveyParams[2]), float(surveyParams[3]), float(surveyParams[4]),
surveyLimit=magLim)
#S.setRandomNumberSeed(53949896)
S.generateObservations()
lumCalModel=L.UniformSpaceDensityGaussianLFBook(S,float(surveyParams[1]), float(surveyParams[2]),
float(priorParams[0]), float(priorParams[1]), float(priorParams[2]), float(priorParams[3]))
class SurveyData(IsDescription):
"""
Class that holds the data model for the data from the simulated parallax survey. Intended for use
with the HDF5 files through the pytables package.
"""
trueParallaxes = Float64Col(S.numberOfStarsInSurvey)
absoluteMagnitudes = Float64Col(S.numberOfStarsInSurvey)
apparentMagnitudes = Float64Col(S.numberOfStarsInSurvey)
parallaxErrors = Float64Col(S.numberOfStarsInSurvey)
magnitudeErrors = Float64Col(S.numberOfStarsInSurvey)
observedParallaxes = Float64Col(S.numberOfStarsInSurvey)
observedMagnitudes = Float64Col(S.numberOfStarsInSurvey)
baseName="LumCalSimSurvey-{0}".format(S.numberOfStars)+"-{0}".format(S.minParallax)
baseName=baseName+"-{0}".format(S.maxParallax)+"-{0}".format(S.meanAbsoluteMagnitude)
baseName=baseName+"-{0}".format(S.varianceAbsoluteMagnitude)
h5file = openFile(baseName+".h5", mode = "w", title = "Simulated Survey")
group = h5file.createGroup("/", 'survey', 'Survey parameters, data, and MCMC parameters')
parameterTable = h5file.createTable(group, 'parameters', SurveyParameters, "Survey parameters")
dataTable = h5file.createTable(group, 'data', SurveyData, "Survey data")
mcmcTable = h5file.createTable(group, 'mcmc', McmcParameters, "MCMC parameters")
surveyParams = parameterTable.row
surveyParams['kind']=S.__class__.__name__
surveyParams['numberOfStars']=S.numberOfStars
surveyParams['minParallax']=S.minParallax
surveyParams['maxParallax']=S.maxParallax
surveyParams['meanAbsoluteMagnitude']=S.meanAbsoluteMagnitude
surveyParams['varianceAbsoluteMagnitude']=S.varianceAbsoluteMagnitude
surveyParams['parallaxErrorNormalizationMagnitude']=S.parallaxErrorNormalizationMagnitude
surveyParams['parallaxErrorSlope']=S.parallaxErrorSlope
surveyParams['parallaxErrorCalibrationFloor']=S.parallaxErrorCalibrationFloor
surveyParams['magnitudeErrorNormalizationMagnitude']=S.magnitudeErrorNormalizationMagnitude
surveyParams['magnitudeErrorSlope']=S.magnitudeErrorSlope
surveyParams['magnitudeErrorCalibrationFloor']=S.magnitudeErrorCalibrationFloor
surveyParams['apparentMagnitudeLimit']=S.apparentMagnitudeLimit
surveyParams['numberOfStarsInSurvey']=S.numberOfStarsInSurvey
surveyParams.append()
parameterTable.flush()
surveyData = dataTable.row
surveyData['trueParallaxes']=S.trueParallaxes
surveyData['absoluteMagnitudes']=S.absoluteMagnitudes
surveyData['apparentMagnitudes']=S.apparentMagnitudes
surveyData['parallaxErrors']=S.parallaxErrors
surveyData['magnitudeErrors']=S.magnitudeErrors
surveyData['observedParallaxes']=S.observedParallaxes
surveyData['observedMagnitudes']=S.observedMagnitudes
surveyData.append()
dataTable.flush()
mcmcParameters = mcmcTable.row
mcmcParameters['iterations']=maxIter
mcmcParameters['burnIn']=burnIter
mcmcParameters['thin']=thinFactor
mcmcParameters['minMeanAbsoluteMagnitude']=float(priorParams[0])
mcmcParameters['maxMeanAbsoluteMagnitude']=float(priorParams[1])
mcmcParameters['priorTau']="OneOverX"
mcmcParameters['tauLow']=float(priorParams[2])
mcmcParameters['tauHigh']=float(priorParams[3])
mcmcParameters.append()
dataTable.flush()
h5file.close()
# Run MCMC and store in HDF5 database
baseName="LumCalResults-{0}".format(S.numberOfStars)+"-{0}".format(S.minParallax)
baseName=baseName+"-{0}".format(S.maxParallax)+"-{0}".format(S.meanAbsoluteMagnitude)
baseName=baseName+"-{0}".format(S.varianceAbsoluteMagnitude)
M=MCMC(lumCalModel.pyMCModel, db='hdf5', dbname=baseName+".h5", dbmode='w', dbcomplevel=9,
dbcomplib='bzip2')
M.use_step_method(Metropolis, M.priorParallaxes)
M.use_step_method(Metropolis, M.priorAbsoluteMagnitudes)
start=now()
M.sample(iter=maxIter, burn=burnIter, thin=thinFactor)
finish=now()
print "Elapsed time in seconds: %f" % (finish-start)
M.db.close()
示例3: MCMC
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import use_step_method [as 别名]
# M.sample(iter=400000, burn=50000, thin=10,verbose=0)
# np.save('mc_data/nm_rho_s.npy',M.trace('rho_s')[:])
# np.save('mc_data/nm_alpha.npy',M.trace('alpha')[:])
# np.save('mc_data/nm_beta.npy',M.trace('beta')[:])
# np.save('mc_data/nm_ia.npy',M.trace('interaction_angle')[:])
# np.save('mc_data/nm_il.npy',M.trace('interaction_length')[:])
# np.save('mc_data/nm_ig.npy',M.trace('ignore_length')[:])
# network model with alignment
M = MCMC(networkModelAlignMC)
M.use_step_method(
pymc.AdaptiveMetropolis,
[
networkModelAlignMC.interaction_angle,
networkModelAlignMC.interaction_length,
networkModelAlignMC.align_weight,
networkModelAlignMC.ignore_length,
],
delay=1000,
)
M.sample(iter=400000, burn=50000, thin=10, verbose=0)
np.save("mc_data/nma_rho_s.npy", M.trace("rho_s")[:])
np.save("mc_data/nma_alpha.npy", M.trace("alpha")[:])
np.save("mc_data/nma_beta.npy", M.trace("beta")[:])
np.save("mc_data/nma_ia.npy", M.trace("interaction_angle")[:])
np.save("mc_data/nma_il.npy", M.trace("interaction_length")[:])
np.save("mc_data/nma_aw.npy", M.trace("align_weight")[:])
np.save("mc_data/nma_ig.npy", M.trace("ignore_length")[:])
示例4: r
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import use_step_method [as 别名]
@deterministic(plot=False)
def r(s=s, e=e, l=l):
"""Allocate appropriate mean to time series"""
out = np.empty(len(disasters_array))
# Early mean prior to switchpoint
out[:s] = e
# Late mean following switchpoint
out[s:] = l
return out
# Where the value of x is None, the value is taken as missing.
D = Impute('D', Poisson, x, mu=r)
M.step_method_dict[DisasterModel.s]
#[<pymc.StepMethods.DiscreteMetropolis object at 0x3e8cb50>]
M.step_method_dict[DisasterModel.e]
#[<pymc.StepMethods.Metropolis object at 0x3e8cbb0>]
M.step_method_dict[DisasterModel.l]
#[<pymc.StepMethods.Metropolis object at 0x3e8ccb0>]
from pymc import Metropolis
M.use_step_method(Metropolis, DisasterModel.l, proposal_sd=2.)
示例5: locals
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import use_step_method [as 别名]
#
# if np.log(random.random()) > logp_p - logp:
#
# self.reject()
return locals()
if __name__ == '__main__':
model = make_bma()
M = MCMC(model)
M.use_step_method(model['ModelMetropolis'], model['regression_model'])
M.sample(iter=5000, burn=1000, thin=1)
model_chain = M.trace("regression_model")[:]
from collections import Counter
counts = Counter(model_chain).items()
counts.sort(reverse=True, key=lambda x: x[1])
for f in counts[:10]:
columns = unpack(f[0])
print('Visits:', f[1])
print(np.array([1. if i in columns else 0 for i in range(0,M.rank)]))
print(M.coefficients.flatten())
X = sm.add_constant(M.X[:, columns], prepend=True)