当前位置: 首页>>代码示例>>Python>>正文


Python MCMC.trace方法代码示例

本文整理汇总了Python中pymc.MCMC.trace方法的典型用法代码示例。如果您正苦于以下问题:Python MCMC.trace方法的具体用法?Python MCMC.trace怎么用?Python MCMC.trace使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pymc.MCMC的用法示例。


在下文中一共展示了MCMC.trace方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: estimate_failures

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
def estimate_failures(samples, #samples from noisy labelers
                      n_samples=10000, #number of samples to run MCMC for
                      burn=None, #burn-in. Defaults to n_samples/2
                      thin=10, #thinning rate. Sample every k samples from markov chain 
                      alpha_p=1, beta_p=1, #beta parameters for true positive rate
                      alpha_e=1, beta_e=10 #beta parameters for noise rates
                      ):

  if burn is None:
    burn = n_samples / 2

  S,N = samples.shape
  p = Beta('p', alpha=alpha_p, beta=beta_p) #prior on true label
  l = Bernoulli('l', p=p, size=S)
  e_pos = Beta('e_pos', alpha_e, beta_e, size=N) # error rate if label = 1
  e_neg = Beta('e_neg', alpha_e, beta_e, size=N) # error rate if label = 0

  @deterministic(plot=False)
  def noise_rate(l=l, e_pos=e_pos, e_neg=e_neg):
    #probability that a noisy labeler puts a label 1
    return np.outer(l, 1-e_pos) + np.outer(1-l, e_neg)

  noisy_label = Bernoulli('noisy_label', p=noise_rate, size=samples.shape, value=samples, observed=True)
  variables = [l, e_pos, e_neg, p, noisy_label, noise_rate]
  model = MCMC(variables, verbose=3)
  model.sample(iter=n_samples, burn=burn, thin=thin)
  model.write_csv('out.csv', ['p', 'e_pos', 'e_neg'])
  p = np.median(model.trace('p')[:])
  e_pos = np.median(model.trace('e_pos')[:],0)
  e_neg = np.median(model.trace('e_neg')[:],0)
  return p, e_pos, e_neg
开发者ID:clinicalml,项目名称:noise-estimation,代码行数:33,代码来源:model.py

示例2: analizeMwm

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
def analizeMwm():
	masked_values = np.ma.masked_equal(x, value=None)
	print("m v: ", masked_values)

	print("dmwm da: ", dmwm.disasters_array)

	Mwm = MCMC(dmwm)
	Mwm.sample(iter=10000, burn=1000, thin=10)

	print("Mwm t: ", Mwm.trace('switchpoint')[:])

	hist(Mwm.trace('late_mean')[:])
	# show()

	plot(Mwm)
开发者ID:psygrammer,项目名称:bayesianPy,代码行数:17,代码来源:pymctutorial.py

示例3: test_nd

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
 def test_nd(self):
     M = MCMC([self.NDstoch()], db=self.name, dbname=os.path.join(testdir, 'ND.'+self.name), dbmode='w')
     M.sample(10, progress_bar=0)
     a = M.trace('nd')[:]
     assert_equal(a.shape, (10,2,2))
     db = getattr(pymc.database, self.name).load(os.path.join(testdir, 'ND.'+self.name))
     assert_equal(db.trace('nd')[:], a)
开发者ID:rabbitmcrabbit,项目名称:pymc,代码行数:9,代码来源:test_database.py

示例4: test_simple

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
    def test_simple(self):

        # Priors
        mu = Normal('mu', mu=0, tau=0.0001)
        s = Uniform('s', lower=0, upper=100, value=10)
        tau = s ** -2

        # Likelihood with missing data
        x = Normal('x', mu=mu, tau=tau, value=m, observed=True)

        # Instantiate sampler
        M = MCMC([mu, s, tau, x])

        # Run sampler
        M.sample(10000, 5000, progress_bar=0)

        # Check length of value
        assert_equal(len(x.value), 100)
        # Check size of trace
        tr = M.trace('x')()
        assert_equal(shape(tr), (5000, 2))

        sd2 = [-2 < i < 2 for i in ravel(tr)]

        # Check for standard normal output
        assert_almost_equal(sum(sd2) / 10000., 0.95, decimal=1)
开发者ID:CamDavidsonPilon,项目名称:pymc,代码行数:28,代码来源:test_missing.py

示例5: bimodal_gauss

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
def bimodal_gauss(data,pm,dmin=0.3):
    '''run MCMC to get regression on bimodal normal distribution'''
    size = len(data[pm])

    

    ### set up model
    p = Uniform( "p", 0.2 , 0.8) #this is the fraction that come from mean1 vs mean2
    # p = distributions.truncated_normal_like('p', mu=0.5, tau=0.001, a=0., b=1.)
    # p = Normal( 'p', mu=(1.*sum(comp0==1))/size, tau=1./0.1**2 ) # attention: wings!, tau = 1/sig^2
    # p = Normal( 'p', mu=0.5, tau=1./0.1**2 ) # attention: wings!, tau = 1/sig^2
    
    ber = Bernoulli( "ber", p = p, size = size) # produces 1 with proportion p
    precision = Gamma('precision', alpha=0.01, beta=0.01)
    
    mean1 = Uniform( "mean1", -0.5, 1.0) # if not truncated
    sig1  = Uniform( 'sig1',  0.01, 1.)
    mean2 = Uniform( "mean2", mean1 + dmin, 1.5)
    sig2  = Uniform( 'sig2',  0.01, 1.)

    pop1  = Normal( 'pop1', mean1, 1./sig1**2) # tau is 1/sig^2
    pop2  = Normal( 'pop2', mean2, 1./sig2**2)


    @deterministic
    def bimod(ber = ber, pop1 = pop1, pop2 = pop2): # value determined from parents completely
        return ber*pop1 + (1-ber)*pop2

    obs = Normal( "obs", bimod, precision, value = data[pm], observed = True)
    model = Model( {"p":p, "precision": precision, "mean1": mean1, 'sig1': sig1, "mean2":mean2, 'sig2':sig2, "obs":obs} )
    
    from pymc import MCMC, Matplot


    M = MCMC(locals(), db='pickle', dbname='metals.pickle')
    iter = 10000; burn = 9000; thin = 10
    M.sample(iter=iter, burn=burn, thin=thin)
    M.db.commit()

    mu1 = np.mean(M.trace('mean1')[:])
    sig1= np.mean(M.trace('sig1')[:])
    mu2 = np.mean(M.trace('mean2')[:])
    sig2= np.mean(M.trace('sig2')[:])
    p   = np.mean(M.trace('p')[:])
    return p, mu1, sig1, mu2, sig2, M
开发者ID:sofiasi,项目名称:darcoda,代码行数:47,代码来源:pymcmetal0.py

示例6: analizeM

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
def analizeM():
	M = MCMC(dm)
	print("M: ", M)

	M.sample(iter=10000, burn=1000, thin=10)
	print("M t: ", M.trace('switchpoint')[:])

	hist(M.trace('late_mean')[:])
	# show()

	plot(M)
	# show()

	print("M smd dm sp: ", M.step_method_dict[dm.switchpoint])
	print("M smd dm em: ", M.step_method_dict[dm.early_mean])
	print("M smd dm lm: ", M.step_method_dict[dm.late_mean])

	M.use_step_method(Metropolis, dm.late_mean, proposal_sd=2.)
开发者ID:psygrammer,项目名称:bayesianPy,代码行数:20,代码来源:pymctutorial.py

示例7: bimodal_gauss

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
def bimodal_gauss(data,pm):
    '''run MCMC to get regression on bimodal normal distribution'''
    m1 = np.mean(data[pm])/2.
    m2 = np.mean(data[pm])*2.
    dm = m2 - m1
    size = len(data[pm])

    ### set up model
    p = Uniform( "p", 0.2 , 0.8) #this is the fraction that come from mean1 vs mean2
    # p = distributions.truncated_normal_like('p', mu=0.5, tau=0.001, a=0., b=1.)
    # p = Normal( 'p', mu=(1.*sum(comp0==1))/size, tau=1./0.1**2 ) # attention: wings!, tau = 1/sig^2
    # p = Normal( 'p', mu=0.5, tau=1./0.1**2 ) # attention: wings!, tau = 1/sig^2
    
    ber = Bernoulli( "ber", p = p, size = size) # produces 1 with proportion p
    precision = Gamma('precision', alpha=0.01, beta=0.01)
    
    dmu = Normal( 'dmu', dm, tau=1./0.05**2 ) # [PS] give difference between means, finite
    # dmu = Lognormal( 'dmu', 0.3, tau=1./0.1**2)
    
    mean1 = Normal( "mean1", mu = m1,          tau = 1./0.1**2 ) # better to use Normals versus Uniforms,
                                                                 # if not truncated
    mean2 = Normal( "mean2", mu = mean1 + dmu, tau = 1./0.1**2 ) # tau is 1/sig^2
    
    @deterministic
    def mean( ber = ber, mean1 = mean1, mean2 = mean2):
        return ber*mean1 + (1-ber)*mean2

    
    obs = Normal( "obs", mean, precision, value = data[pm], observed = True)
    model = Model( {"p":p, "precision": precision, "mean1": mean1, "mean2":mean2, "obs":obs} )
    
    from pymc import MCMC, Matplot



    M = MCMC(locals(), db='pickle', dbname='metals.pickle')
    iter = 3000; burn = 2000; thin = 10
    M.sample(iter=iter, burn=burn, thin=thin)
    M.db.commit()

    mu1 = np.mean(M.trace('mean1')[:])
    mu2 = np.mean(M.trace('mean2')[:])
    p   = np.mean(M.trace('p')[:])
    return p, mu1, 0.1, mu2, 0.1, M
开发者ID:sofiasi,项目名称:darcoda,代码行数:46,代码来源:pymcmetal.py

示例8: test_zcompression

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
 def test_zcompression(self):
     with warnings.catch_warnings():
         warnings.simplefilter('ignore')
         db = pymc.database.hdf5.Database(dbname=os.path.join(testdir, 'disaster_modelCompressed.hdf5'),
                                          dbmode='w',
                                          dbcomplevel=5)                                 
         S = MCMC(disaster_model, db=db)
         S.sample(45,10,1, progress_bar=0)
         assert_array_equal(S.trace('early_mean')[:].shape, (35,))
         S.db.close()
         db.close()
         del S
开发者ID:rabbitmcrabbit,项目名称:pymc,代码行数:14,代码来源:test_database.py

示例9: estimate_failures_from_counts

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
def estimate_failures_from_counts(counts, #samples from noisy labelers
                      n_samples=10000, #number of samples to run MCMC for
                      burn=None, #burn-in. Defaults to n_samples/2
                      thin=10, #thinning rate. Sample every k samples from markov chain 
                      alpha_p=1, beta_p=1, #beta parameters for true positive rate
                      alpha_e=1, beta_e=10 #beta parameters for noise rates
                      ):

  if burn is None:
    burn = n_samples / 2

  S = counts.sum()
  N = len(counts.shape)

  p_label = Beta('p_label', alpha=alpha_p, beta=beta_p) #prior on true label
  e_pos = Beta('e_pos', alpha_e, beta_e, size=N) # error rate if label = 1
  e_neg = Beta('e_neg', alpha_e, beta_e, size=N) # error rate if label = 0

  print counts
  @deterministic(plot=False)
  def patterns(p_label=p_label, e_pos=e_pos, e_neg=e_neg):
    #probability that the noisy labelers output pattern p
    P = np.zeros((2,)*N)
    for pat in itertools.product([0,1], repeat=N):
      P[pat] = p_label*np.product([1-e_pos[i] if pat[i]==1 else e_pos[i] for i in xrange(N)])
      P[pat] += (1-p_label)*np.product([e_neg[i] if pat[i]==1 else 1-e_neg[i] for i in xrange(N)])
    assert np.abs(P.sum() - 1) < 1e-6
    return P.ravel()
    
  pattern_counts = Multinomial('pattern_counts',n=S, p=patterns, value=counts.ravel(), observed=True)
  variables = [p_label, e_pos, e_neg, patterns]
  model = MCMC(variables, verbose=3)
  model.sample(iter=n_samples, burn=burn, thin=thin)
  model.write_csv('out.csv', ['p_label', 'e_pos', 'e_neg'])
  p = np.median(model.trace('p_label')[:])
  e_pos = np.median(model.trace('e_pos')[:],0)
  e_neg = np.median(model.trace('e_neg')[:],0)
  return p, e_pos, e_neg
开发者ID:clinicalml,项目名称:noise-estimation,代码行数:40,代码来源:model.py

示例10: test_zcompression

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
    def test_zcompression(self):

        original_filters = warnings.filters[:]
        warnings.simplefilter("ignore")
        try:
            db = pymc.database.hdf5.Database(dbname=os.path.join(testdir, 'disaster_modelCompressed.hdf5'),
                                             dbmode='w',
                                             dbcomplevel=5)
            S = MCMC(disaster_model, db=db)
            S.sample(45,10,1, progress_bar=0)
            assert_array_equal(S.trace('early_mean')[:].shape, (35,))
            S.db.close()
            db.close()
            del S
        finally:
            warnings.filters = original_filters
开发者ID:lmoustakas,项目名称:pymc,代码行数:18,代码来源:test_database.py

示例11: fit_std_curve_by_pymc

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
def fit_std_curve_by_pymc(i_vals, i_sds, dpx_concs):
    import pymc
    from pymc import Uniform, stochastic, deterministic, MCMC
    from pymc import Matplot
    # Define prior distributions for both Ka and Kd
    ka = Uniform('ka', lower=0, upper=1000)
    kd = Uniform('kd', lower=0, upper=1000)

    @stochastic(plot=True, observed=True)
    def quenching_model(ka=ka, kd=kd, value=i_vals):
        pred_i = quenching_func(ka, kd, dpx_concs)
        # The first concentration in dpx_concs should always be zero
        # (that is, the first point in the titration should be the
        # unquenched fluorescence), so we assert that here:
        assert dpx_concs[0] == 0
        # The reason this is necessary is that in the likelihood calculation
        # we skip the error for the first point, since (when the std. err
        # is calculated by well) the error is 0 (the I / I_0 ratio is
        # always 1 for each well, the the variance/SD across the wells is 0).
        # If we don't skip this first point, we get nan for the likelihood.
        # In addition, the model always predicts 1 for the I / I_0 ratio
        # when the DPX concentration is 0, so it contributes nothing to
        # the overall fit.
        return -np.sum((value[1:] - pred_i[1:])**2 / (2 * i_sds[1:]**2))

    pymc_model = pymc.Model([ka, kd, quenching_model])
    mcmc = MCMC(pymc_model)
    mcmc.sample(iter=155000, burn=5000, thin=150)
    Matplot.plot(mcmc)

    plt.figure()
    num_to_plot = 1000
    ka_vals = mcmc.trace('ka')[:]
    kd_vals = mcmc.trace('kd')[:]
    if num_to_plot > len(ka_vals):
        num_to_plot = len(ka_vals)
    for i in range(num_to_plot):
        plt.plot(dpx_concs, quenching_func(ka_vals[i], kd_vals[i], dpx_concs),
                 alpha=0.01, color='r')
    plt.errorbar(dpx_concs, i_vals, yerr=i_sds, linestyle='', marker='o',
            color='k', linewidth=2)

    return (ka_vals, kd_vals)
开发者ID:johnbachman,项目名称:tBidBaxLipo,代码行数:45,代码来源:dpx_assay.py

示例12: Outliers_Krough

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
 def Outliers_Krough(self):
     
     fit_dict                = OrderedDict()
     
     fit_dict['methodology'] = r'Outliers Krough'
     
     #Initial Guess for fitting
     Bces_guess              = self.bces_regression()
     m_0, n_0                = Bces_guess['m'][0], Bces_guess['n'][0]
             
     Spread_vector           = ones(len(self.x_array))
     
     #Model for outliers detection
     Outliers_dect_dict      = self.inference_outliers(self.x_array, self.y_array, m_0, n_0, Spread_vector)
     
     mcmc = MCMC(Outliers_dect_dict)
     mcmc.sample(100000, 20000)
     
     #Extract the data with the outliers coordinates
     probability_of_points           = mcmc.trace('inlier')[:].astype(float).mean(0)
     fit_dict['x_coords_outliers']   = self.x_array[probability_of_points < self.prob_threshold]
     fit_dict['y_coords_outliers']   = self.y_array[probability_of_points < self.prob_threshold]
             
     return fit_dict
开发者ID:Delosari,项目名称:Dazer,代码行数:26,代码来源:FittingTools.py

示例13: range

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
Ibetas = np.empty((Ni,int((iters-burns)/thins)))
Iig = np.empty((Ni,int((iters-burns)/thins)))
Iil = np.empty((Ni,int((iters-burns)/thins)))
Iia = np.empty((Ni,int((iters-burns)/thins)))
Iiw = np.empty((Ni,int((iters-burns)/thins)))
Iae = np.empty((Ni,int((iters-burns)/thins)))
for i in range(0, 1):

    print('-------------')
    print('Processing class ' + str(i+1) + ' out of ' + str(Ni))
    print('-------------')
    np.save('terribleHackClass.npy',np.array([i]))
    imp.reload(decayModelAlign)
    M = MCMC(decayModelAlign)
    M.sample(iter=iters, burn=burns, thin=thins,verbose=0)
    Irhos[i,:]=M.trace('rho_s')[:]
    Ialphas[i,:]=M.trace('alpha')[:]
    Ibetas[i,:]=M.trace('beta')[:]
    Iig[i,:]=M.trace('ignore_length')[:]
    Iil[i,:]=M.trace('attract_length')[:]
    Iia[i,:]=M.trace('attract_angle')[:]
    Iiw[i,:]=M.trace('align_weight')[:]
    Iae[i,:]=M.trace('attract_exponent')[:]
    
np.save('Irhos0.npy',Irhos)
np.save('Ialphas0.npy',Ialphas)
np.save('Ibetas0.npy',Ibetas)
np.save('Iig0.npy',Iig)
np.save('Iil0.npy',Iil)
np.save('Iia0.npy',Iia)
np.save('Iiw0.npy',Iiw)
开发者ID:ctorney,项目名称:dolphinUnion,代码行数:33,代码来源:runClasses.py

示例14: bayes_plotter

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
class bayes_plotter():
    
    def __init__(self):
        
        self.Fig                = None
        self.Axis               = None
        self.Valid_Traces       = None
        
        self.pymc_database      = None
        self.dbMCMC             = None

        self.Traces_filter      = None
        self.pymc_stats_keys    = ['mean', '95% HPD interval', 'standard deviation',  'mc error', 'quantiles', 'n']

    def load_pymc_database(self, Database_address):
        
        #In case the database is open from a previous use
        if self.pymc_database != None:
            self.pymc_database.close()
        
        #Load the pymc output textfile database
        self.pymc_database  = database.pickle.load(Database_address)
        
        #Create a dictionary with the bases to 
        self.Traces_dict = {}
        self.traces_list = self.pymc_database.trace_names[0] #This variable contains all the traces from the MCMC (stochastic and deterministic)
        
        for trace in self.traces_list:
            self.Traces_dict[trace] = self.pymc_database.trace(trace)
    
        #Generate a MCMC object to recover all the data from the run
        self.dbMCMC      = MCMC(self.Traces_dict, self.pymc_database)
        
        return

    def extract_traces_statistics(self, traces_list = None):
        
        #     traces_yplus = bp.pymc_database.trace('He_abud')[:]
        #     print 'The y_plus trace evolution\n'
        #     print 'Mean inf',      statistics_dict['He_abud']['mean']
        #     print 'Median numpy',  median(traces_yplus)
        #     print 'Mean numpy',    mean(traces_yplus), '\n'
        # 
        #     print 'percentiles: 25, 50, 75' 
        #     print percentile(traces_yplus,25), percentile(traces_yplus,50), percentile(traces_yplus,75),'\n'
        #     print 'percentiles: 16, 84' 
        #     print percentile(traces_yplus,16), percentile(traces_yplus,84),'\n'
        #     print 'percentiles: 37.73, 68.27' 
        #     print percentile(traces_yplus,37.73), percentile(traces_yplus,68.27),'\n'
        #     print 'Standard deviation'
        #     print percentile(traces_yplus,4.55), percentile(traces_yplus,95.45)
        #     print 'HUD 95', statistics_dict['He_abud']['95% HPD interval'],'\n'
        #     
        #     print 'PYMC std', statistics_dict['He_abud']['standard deviation']
        #     print 'Numpy std', std(traces_yplus), '\n'
        
        
        self.statistics_dict = OrderedDict()
                
        #If no list input we extract all the traces from the analysis        
        if traces_list == None:
            traces_list = self.traces_list
                
        for trace in traces_list:
            self.statistics_dict[trace] = OrderedDict()
            
            for stat in self.pymc_stats_keys:
                self.statistics_dict[trace][stat] = self.dbMCMC.trace(trace).stats()[stat]                
            
            Trace_array = self.pymc_database.trace(trace)[:] 
            self.statistics_dict[trace]['16th_p'] = percentile(Trace_array, 16)
            self.statistics_dict[trace]['84th_p'] = percentile(Trace_array, 84)
        
        return self.statistics_dict
        
    def close_database(self):
        
        self.pymc_database.close()
        self.pymc_database = None
        
        return

    def Import_FigConf(self, Fig = None, Axis = None):
        
        if Fig != None:
            self.Fig = Fig
            
        if Axis != None:
            self.Axis = Axis
    
    def FigConf(self, Figtype = 'Single', FigWidth = 16, FigHeight = 9, AxisFormat = 111, fontsize = 8, PlotStyle = 'Night', n_columns = None, n_rows = None, n_colors = None, color_map = 'colorblind'):
        
        self.Triangle_Saver = False
        
        if Figtype == 'Single':
            self.Fig                = plt.figure(figsize = (FigWidth, FigHeight))  
            self.Axis1              = self.Fig.add_subplot(AxisFormat)
            #fig.subplots_adjust(hspace = .5, wspace=.001) 
        
        elif Figtype == 'Posteriors':
#.........这里部分代码省略.........
开发者ID:Delosari,项目名称:Dazer,代码行数:103,代码来源:bayesian_data.py

示例15: MCMC

# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import trace [as 别名]
iterations = 1000000
burn = 900000
thin = 10

hmod = kq1.generate_model(HISTORICAL)
cmod = kq1.generate_model(CONCURRENT)

H = MCMC(hmod, db="pickle", dbname="historical_model.pickle")

H.sample(iterations, burn, thin=thin, verbose=2)

C = MCMC(cmod, db="pickle", dbname="concurrent_model.pickle")

C.sample(iterations, burn, thin=thin, verbose=2)

conc = np.sum(C.trace("pred")[:], 0)/float((iterations-burn)/thin)
historical = np.sum(H.trace("pred")[:], 0)/float((iterations-burn)/thin)

x = np.arange(200,3200, 200)

colors = ('0.7', 'black')
markers = (False, True)

for i,p in enumerate((70,85)):
    plot(x, conc[i*-1][C.crit_pred==1], color=colors[i], marker='^'*markers[i])
    plot(x, historical[i*-1][H.crit_pred==1], color=colors[i], marker='o'*markers[i])
    plot(x, conc[i*-1][C.crit_pred==0], color=colors[i], marker='^'*markers[i], linestyle="dashed")
    plot(x, historical[i*-1][H.crit_pred==0], color=colors[i], marker='o'*markers[i], linestyle="dashed")
xlim(150, 3050)
ylim(0,1)
开发者ID:fonnesbeck,项目名称:PKUMetaAnalysis,代码行数:32,代码来源:runmodel.py


注:本文中的pymc.MCMC.trace方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。