本文整理汇总了Python中pymc.MCMC.stats方法的典型用法代码示例。如果您正苦于以下问题:Python MCMC.stats方法的具体用法?Python MCMC.stats怎么用?Python MCMC.stats使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pymc.MCMC
的用法示例。
在下文中一共展示了MCMC.stats方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: bayesian_regression
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import stats [as 别名]
def bayesian_regression(self, Methodology):
fit_dict = OrderedDict()
fit_dict['methodology'] = r'Inference $\chi^{2}$ model'
#Initial guess for the fitting:
Np_lsf = polyfit(self.x_array, self.y_array, 1)
m_0, n_0 = Np_lsf[0], Np_lsf[1]
MCMC_dict = self.lr_ChiSq(self.x_array, self.y_array, m_0, n_0)
myMCMC = MCMC(MCMC_dict)
myMCMC.sample(iter=10000, burn=1000)
fit_dict['m'], fit_dict['n'], fit_dict['m_error'], fit_dict['n_error'] = myMCMC.stats()['m']['mean'], myMCMC.stats()['n']['mean'], myMCMC.stats()['m']['standard deviation'], myMCMC.stats()['n']['standard deviation']
return fit_dict
示例2: test_stats_after_reload
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import stats [as 别名]
def test_stats_after_reload(self):
db = database.pickle.load("MCMC.pickle")
M2 = MCMC(disaster_model, db=db)
M2.stats()
db.close()
os.remove("MCMC.pickle")
示例3: dotheMCMC
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import stats [as 别名]
def dotheMCMC(x):
'''
Performs the Markov Chain Monte Carlo analysis to find the global
average of film runtimes and the deviation from that average for
different countries, languages and genres.
Parameters
----------
x: tuple
x[0]: integer
the year in which the films to be analysed were released.
x[1]: pandas dataframe
the dataframe containing all the movies released that year
Returns
-------
stats: a pyMC2 stats dictionary
this contains the results of the MCMC, i.e. the average, standard
deviation and 95% confidence interval for each category and for the
global average.
group: pandas dataframe
identical to the dataframe x[1]
representedCountries: dictionary of arrays
a dictionary of two elements: "same" and "diff". dict['same'] and
dict['diff'] each contains an array of two element lists. Each
pair is the name of a country and the number of times that country
appears in the group dataframe for overlapping and non-overlapping
writer/director respectively. The array is ordered by the number of
appearances from smallest to largest.
representedLanguages: dictionary of arrays
as representedCountries but for languages
representedGenres: dictionary of arrays
as representedCountries but for genres
numRepresented: integer
the total number of movies released that year
'''
#get the parameters needed to initialize the model
year, group = x[0], x[1]
representedCountries = get_represented(group, countries, 'Cou_')
representedLanguages = get_represented(group, languages, 'Lan_')
representedGenres = get_represented(group, genres, 'Gen_')
numRepresented = representedCountries['same'].shape[0] + \
representedCountries['diff'].shape[0]
numRepresented += representedLanguages['same'].shape[0] + \
representedLanguages['diff'].shape[0]
numRepresented += representedGenres['same'].shape[0] + \
representedGenres['diff'].shape[0]
#initialize the model in a pyMC object, then perform the MCMC
mc=MCMC(film_model_by_year(str(year), group, representedCountries, \
representedLanguages, representedGenres, \
numRepresented))
mc.sample(iter=300000, burn=75000, progress_bar=False)
return {'stats':mc.stats(), 'year':year, 'countries':representedCountries, \
'languages': representedLanguages, 'genres':representedGenres, \
'num': numRepresented}
示例4: range
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import stats [as 别名]
print """Beta distribution with alpha=%.4f and beta=%.4f yields mu=%.4f and sigma^2=%.4f
""" % (M.alpha, M.beta, B.mean(), B.var())
# ## (b) Draw samples from the posterior
M.sample(20000, burn=2000, thin=20)
# ## (c) Check convergence of MCMC by plotting traces
fig, axs = plt.subplots(1, 3, figsize=(12, 4));
for i in range(3):
axs[i].plot(M.avg.trace[:, i]);
axs[i].set_title('Player %u' % i);
axs[0].set_ylabel('Batting average');
axs[1].set_xlabel('Sample');
# ## (d) Posterior mean and 95% CI for each player
avg_mcmc_mean = M.stats()['avg']['mean']
avg_mcmc_ci = M.stats()['avg']['95% HPD interval']
print
print 'MCMC mean for each player'
for m, ci in zip(avg_mcmc_mean, avg_mcmc_ci):
print 'Mean: %.4f\tCI: (%.4f, %.4f)' % (m, ci[0], ci[1])
# transform confidence intervals for plotting
avg_mcmc_ci[:, 0] = avg_mcmc_mean - avg_mcmc_ci[:, 0]
avg_mcmc_ci[:, 1] = avg_mcmc_ci[:, 1] - avg_mcmc_mean
# ## (e) Full-season batting average versus MLE from April
df_full = pd.read_csv('laa_2011_full.txt', sep='\t')
avg_mle_full = df_full.H / df_full.AB.astype(float)
示例5: model
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import stats [as 别名]
# value for each parameter, as well as the 95% confidence interval.
# plot function takes the model (or a single parameter) as an argument:
Matplot.plot(M)
plt.show()
# ### Making inferences about model parameters ###
# The *stats()* function provides an interface to the statistics of our posterior,
# in the form of a dictionary. For example, let's find the predicted ratio between
# effective sizes of the disk and the bulge, and let's also explore how confidently
# we can determine the effective surface brightness of the disk.
print 'R_effective (bulge) / R_effective (disk) =', \
M.stats()['r_e_B']['mean'] / M.stats()['r_e_D']['mean']
print 'Effective surface brightness of the bulge: \n', \
' Best-fit value:', M.stats()['M_e_B']['mean'], \
'\n 95% Confidence interval:', M.stats()['M_e_B']['quantiles'][2.5], \
'to', M.stats()['M_e_B']['quantiles'][97.5]
# ### Visualizing specific realizations of our model ###
# The *trace()* method presents the values of a variable for all of the saved
# Markov Chain steps. Let's plot up several of these traces, and see how
# the model changes with different parameter values.
for i in range(50):
plt.plot(M.r.value, M.trace('SB')[i], c='gray', alpha=.25)
plt.scatter(M.r.value, M.mags.value, c='r')
示例6: MCMC
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import stats [as 别名]
from pymc import MCMC
import numpy as np
from pythonMCMC import pymcCrater
from pymc.Matplot import plot
from pylab import hist, show,draw
M = MCMC(pymcCrater)
M.sample(iter=10000, burn=700, thin=5)
print M.trace('lnlike')[:]
print M.stats()
plot(M)
show()
示例7: MCMC
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import stats [as 别名]
import coal_disaster
from pymc import MCMC
from pylab import hist, show
from pymc.Matplot import plot,pyplot
__author__ = 'auroua'
M = MCMC(coal_disaster)
print M.switchpoint.value
M.sample(iter=10000, burn=1000, thin=10)
# print len(M.trace('switchpoint')[:])
# hist(M.trace('late_mean')[:])
# show()
plot(M)
M.stats()
示例8: MCMC
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import stats [as 别名]
#!/usr/bin/env python
import two_normal_model
from pymc import MCMC
from pymc.Matplot import plot
# do posterior sampling
m = MCMC(two_normal_model)
m.sample(iter=100000, burn=1000)
print(m.stats())
import numpy
for p in ['mean1', 'mean2', 'std_dev', 'theta']:
numpy.savetxt("%s.trace" % p, m.trace(p)[:])
# draw some pictures
plot(m)
示例9: test_stats_after_reload
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import stats [as 别名]
def test_stats_after_reload(self):
db = database.pickle.load('MCMC.pickle')
M2 = MCMC(DisasterModel, db=db)
M2.stats()
db.close()
os.remove('MCMC.pickle')
示例10: MCMC
# 需要导入模块: from pymc import MCMC [as 别名]
# 或者: from pymc.MCMC import stats [as 别名]
import model
from pymc import MCMC
import pprint
import sys, os
# Run sampling for 40000 iterations, with a burn-in of 2000 iterations and thinning for every 10 iterations.
M = MCMC(model)
print M
sys.exit()
M.sample(iter=40000, burn=5000, thin=10)
# Refer to sample_output.txt for example of posterior sampling summary.
pprint.pprint(M.stats())