当前位置: 首页>>代码示例>>Python>>正文


Python PDAnalyzer.get_equilibrium_reaction_energy方法代码示例

本文整理汇总了Python中pymatgen.phasediagram.pdanalyzer.PDAnalyzer.get_equilibrium_reaction_energy方法的典型用法代码示例。如果您正苦于以下问题:Python PDAnalyzer.get_equilibrium_reaction_energy方法的具体用法?Python PDAnalyzer.get_equilibrium_reaction_energy怎么用?Python PDAnalyzer.get_equilibrium_reaction_energy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pymatgen.phasediagram.pdanalyzer.PDAnalyzer的用法示例。


在下文中一共展示了PDAnalyzer.get_equilibrium_reaction_energy方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: PDAnalyzerTest

# 需要导入模块: from pymatgen.phasediagram.pdanalyzer import PDAnalyzer [as 别名]
# 或者: from pymatgen.phasediagram.pdanalyzer.PDAnalyzer import get_equilibrium_reaction_energy [as 别名]
class  PDAnalyzerTest(unittest.TestCase):

    def setUp(self):
        module_dir = os.path.dirname(os.path.abspath(__file__))
        (elements, entries) = PDEntryIO.from_csv(os.path.join(module_dir,
                                                              "pdentries_test.csv"))
        self.pd = PhaseDiagram(entries)
        self.analyzer = PDAnalyzer(self.pd)

    def test_get_e_above_hull(self):
        for entry in self.pd.stable_entries:
            self.assertLess(self.analyzer.get_e_above_hull(entry), 1e-11,
                            "Stable entries should have e above hull of zero!")
        for entry in self.pd.all_entries:
            if entry not in self.pd.stable_entries:
                e_ah = self.analyzer.get_e_above_hull(entry)
                self.assertGreaterEqual(e_ah, 0)
                self.assertTrue(isinstance(e_ah, Number))

    def test_get_equilibrium_reaction_energy(self):
        for entry in self.pd.stable_entries:
            self.assertLessEqual(
                self.analyzer.get_equilibrium_reaction_energy(entry), 0,
                "Stable entries should have negative equilibrium reaction energy!")

    def test_get_decomposition(self):
        for entry in self.pd.stable_entries:
            self.assertEquals(len(self.analyzer.get_decomposition(entry.composition)), 1,
                              "Stable composition should have only 1 decomposition!")
        dim = len(self.pd.elements)
        for entry in self.pd.all_entries:
            ndecomp = len(self.analyzer.get_decomposition(entry.composition))
            self.assertTrue(ndecomp > 0 and ndecomp <= dim,
                            "The number of decomposition phases can at most be equal to the number of components.")

        #Just to test decomp for a ficitious composition
        ansdict = {entry.composition.formula: amt
                   for entry, amt in
                   self.analyzer.get_decomposition(Composition("Li3Fe7O11")).items()}
        expected_ans = {"Fe2 O2": 0.0952380952380949,
                        "Li1 Fe1 O2": 0.5714285714285714,
                        "Fe6 O8": 0.33333333333333393}
        for k, v in expected_ans.items():
            self.assertAlmostEqual(ansdict[k], v)

    def test_get_transition_chempots(self):
        for el in self.pd.elements:
            self.assertLessEqual(len(self.analyzer.get_transition_chempots(el)),
                                 len(self.pd.facets))

    def test_get_element_profile(self):
        for el in self.pd.elements:
            for entry in self.pd.stable_entries:
                if not (entry.composition.is_element):
                    self.assertLessEqual(len(self.analyzer.get_element_profile(el, entry.composition)),
                                         len(self.pd.facets))

    def test_get_get_chempot_range_map(self):
        elements = [el for el in self.pd.elements if el.symbol != "Fe"]
        self.assertEqual(len(self.analyzer.get_chempot_range_map(elements)), 10)
开发者ID:bkappes,项目名称:pymatgen,代码行数:62,代码来源:test_pdanalyzer.py

示例2: PDAnalyzerTest

# 需要导入模块: from pymatgen.phasediagram.pdanalyzer import PDAnalyzer [as 别名]
# 或者: from pymatgen.phasediagram.pdanalyzer.PDAnalyzer import get_equilibrium_reaction_energy [as 别名]
class PDAnalyzerTest(unittest.TestCase):

    def setUp(self):
        module_dir = os.path.dirname(os.path.abspath(__file__))
        (elements, entries) = PDEntryIO.from_csv(os.path.join(module_dir,
                                                              "pdentries_test.csv"))
        self.pd = PhaseDiagram(entries)
        self.analyzer = PDAnalyzer(self.pd)

    def test_get_e_above_hull(self):
        for entry in self.pd.stable_entries:
            self.assertLess(self.analyzer.get_e_above_hull(entry), 1e-11,
                            "Stable entries should have e above hull of zero!")
        for entry in self.pd.all_entries:
            if entry not in self.pd.stable_entries:
                e_ah = self.analyzer.get_e_above_hull(entry)
                self.assertGreaterEqual(e_ah, 0)
                self.assertTrue(isinstance(e_ah, Number))

    def test_get_equilibrium_reaction_energy(self):
        for entry in self.pd.stable_entries:
            self.assertLessEqual(
                self.analyzer.get_equilibrium_reaction_energy(entry), 0,
                "Stable entries should have negative equilibrium reaction energy!")

    def test_get_decomposition(self):
        for entry in self.pd.stable_entries:
            self.assertEquals(len(self.analyzer.get_decomposition(entry.composition)), 1,
                              "Stable composition should have only 1 decomposition!")
        dim = len(self.pd.elements)
        for entry in self.pd.all_entries:
            ndecomp = len(self.analyzer.get_decomposition(entry.composition))
            self.assertTrue(ndecomp > 0 and ndecomp <= dim,
                            "The number of decomposition phases can at most be equal to the number of components.")

        #Just to test decomp for a ficitious composition
        ansdict = {entry.composition.formula: amt
                   for entry, amt in
                   self.analyzer.get_decomposition(Composition("Li3Fe7O11")).items()}
        expected_ans = {"Fe2 O2": 0.0952380952380949,
                        "Li1 Fe1 O2": 0.5714285714285714,
                        "Fe6 O8": 0.33333333333333393}
        for k, v in expected_ans.items():
            self.assertAlmostEqual(ansdict[k], v)

    def test_get_transition_chempots(self):
        for el in self.pd.elements:
            self.assertLessEqual(len(self.analyzer.get_transition_chempots(el)),
                                 len(self.pd.facets))

    def test_get_element_profile(self):
        for el in self.pd.elements:
            for entry in self.pd.stable_entries:
                if not (entry.composition.is_element):
                    self.assertLessEqual(len(self.analyzer.get_element_profile(el, entry.composition)),
                                         len(self.pd.facets))

    def test_get_get_chempot_range_map(self):
        elements = [el for el in self.pd.elements if el.symbol != "Fe"]
        self.assertEqual(len(self.analyzer.get_chempot_range_map(elements)), 10)

    def test_getmu_vertices_stability_phase(self):
        results = self.analyzer.getmu_vertices_stability_phase(Composition.from_formula("LiFeO2"), Element("O"))
        self.assertAlmostEqual(len(results), 6)
        test_equality = False
        for c in results:
            if abs(c[Element("O")]+7.115) < 1e-2 and abs(c[Element("Fe")]+6.596) < 1e-2 and \
                    abs(c[Element("Li")]+3.931) < 1e-2:
                test_equality = True
        self.assertTrue(test_equality,"there is an expected vertex missing in the list")


    def test_getmu_range_stability_phase(self):
        results = self.analyzer.get_chempot_range_stability_phase(
            Composition("LiFeO2"), Element("O"))
        self.assertAlmostEqual(results[Element("O")][1], -4.4501812249999997)
        self.assertAlmostEqual(results[Element("Fe")][0], -6.5961470999999996)
        self.assertAlmostEqual(results[Element("Li")][0], -3.6250022625000007)
开发者ID:malvo06,项目名称:pymatgen,代码行数:80,代码来源:test_pdanalyzer.py

示例3: _get_2d_plot

# 需要导入模块: from pymatgen.phasediagram.pdanalyzer import PDAnalyzer [as 别名]
# 或者: from pymatgen.phasediagram.pdanalyzer.PDAnalyzer import get_equilibrium_reaction_energy [as 别名]
    def _get_2d_plot(self, label_stable=True, label_unstable=True,
                     ordering=None, energy_colormap=None, vmin_mev=-60.0,
                     vmax_mev=60.0, show_colorbar=True,
                     process_attributes=False):
        """
        Shows the plot using pylab.  Usually I won't do imports in methods,
        but since plotting is a fairly expensive library to load and not all
        machines have matplotlib installed, I have done it this way.
        """

        plt = get_publication_quality_plot(8, 6)
        from matplotlib.font_manager import FontProperties
        if ordering is None:
            (lines, labels, unstable) = self.pd_plot_data
        else:
            (_lines, _labels, _unstable) = self.pd_plot_data
            (lines, labels, unstable) = order_phase_diagram(
                _lines, _labels, _unstable, ordering)
        if energy_colormap is None:
            if process_attributes:
                for x, y in lines:
                    plt.plot(x, y, "k-", linewidth=3, markeredgecolor="k")
                # One should think about a clever way to have "complex"
                # attributes with complex processing options but with a clear
                #  logic. At this moment, I just use the attributes to know
                # whether an entry is a new compound or an existing (from the
                #  ICSD or from the MP) one.
                for x, y in labels.keys():
                    if labels[(x, y)].attribute is None or \
                            labels[(x, y)].attribute == "existing":
                        plt.plot(x, y, "ko", linewidth=3, markeredgecolor="k",
                                 markerfacecolor="b", markersize=12)
                    else:
                        plt.plot(x, y, "k*", linewidth=3, markeredgecolor="k",
                                 markerfacecolor="g", markersize=18)
            else:
                for x, y in lines:
                    plt.plot(x, y, "ko-", linewidth=3, markeredgecolor="k",
                             markerfacecolor="b", markersize=15)
        else:
            from matplotlib.colors import Normalize, LinearSegmentedColormap
            from matplotlib.cm import ScalarMappable
            pda = PDAnalyzer(self._pd)
            for x, y in lines:
                plt.plot(x, y, "k-", linewidth=3, markeredgecolor="k")
            vmin = vmin_mev / 1000.0
            vmax = vmax_mev / 1000.0
            if energy_colormap == 'default':
                mid = - vmin / (vmax - vmin)
                cmap = LinearSegmentedColormap.from_list(
                    'my_colormap', [(0.0, '#005500'), (mid, '#55FF55'),
                                    (mid, '#FFAAAA'), (1.0, '#FF0000')])
            else:
                cmap = energy_colormap
            norm = Normalize(vmin=vmin, vmax=vmax)
            _map = ScalarMappable(norm=norm, cmap=cmap)
            _energies = [pda.get_equilibrium_reaction_energy(entry)
                         for coord, entry in labels.items()]
            energies = [en if en < 0.0 else -0.00000001 for en in _energies]
            vals_stable = _map.to_rgba(energies)
            ii = 0
            if process_attributes:
                for x, y in labels.keys():
                    if labels[(x, y)].attribute is None or \
                            labels[(x, y)].attribute == "existing":
                        plt.plot(x, y, "o", markerfacecolor=vals_stable[ii],
                                 markersize=12)
                    else:
                        plt.plot(x, y, "*", markerfacecolor=vals_stable[ii],
                                 markersize=18)
                    ii += 1
            else:
                for x, y in labels.keys():
                    plt.plot(x, y, "o", markerfacecolor=vals_stable[ii],
                             markersize=15)
                    ii += 1

        font = FontProperties()
        font.set_weight("bold")
        font.set_size(24)

        # Sets a nice layout depending on the type of PD. Also defines a
        # "center" for the PD, which then allows the annotations to be spread
        # out in a nice manner.
        if len(self._pd.elements) == 3:
            plt.axis("equal")
            plt.xlim((-0.1, 1.2))
            plt.ylim((-0.1, 1.0))
            plt.axis("off")
            center = (0.5, math.sqrt(3) / 6)
        else:
            all_coords = labels.keys()
            miny = min([c[1] for c in all_coords])
            ybuffer = max(abs(miny) * 0.1, 0.1)
            plt.xlim((-0.1, 1.1))
            plt.ylim((miny - ybuffer, ybuffer))
            center = (0.5, miny / 2)
            plt.xlabel("Fraction", fontsize=28, fontweight='bold')
            plt.ylabel("Formation energy (eV/fu)", fontsize=28,
                       fontweight='bold')
#.........这里部分代码省略.........
开发者ID:Bismarrck,项目名称:pymatgen,代码行数:103,代码来源:plotter.py


注:本文中的pymatgen.phasediagram.pdanalyzer.PDAnalyzer.get_equilibrium_reaction_energy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。