当前位置: 首页>>代码示例>>Python>>正文


Python PDAnalyzer.get_e_above_hull方法代码示例

本文整理汇总了Python中pymatgen.phasediagram.pdanalyzer.PDAnalyzer.get_e_above_hull方法的典型用法代码示例。如果您正苦于以下问题:Python PDAnalyzer.get_e_above_hull方法的具体用法?Python PDAnalyzer.get_e_above_hull怎么用?Python PDAnalyzer.get_e_above_hull使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pymatgen.phasediagram.pdanalyzer.PDAnalyzer的用法示例。


在下文中一共展示了PDAnalyzer.get_e_above_hull方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: PDAnalyzerTest

# 需要导入模块: from pymatgen.phasediagram.pdanalyzer import PDAnalyzer [as 别名]
# 或者: from pymatgen.phasediagram.pdanalyzer.PDAnalyzer import get_e_above_hull [as 别名]
class  PDAnalyzerTest(unittest.TestCase):

    def setUp(self):
        module_dir = os.path.dirname(os.path.abspath(__file__))
        (elements, entries) = PDEntryIO.from_csv(os.path.join(module_dir,
                                                              "pdentries_test.csv"))
        self.pd = PhaseDiagram(entries)
        self.analyzer = PDAnalyzer(self.pd)

    def test_get_e_above_hull(self):
        for entry in self.pd.stable_entries:
            self.assertLess(self.analyzer.get_e_above_hull(entry), 1e-11,
                            "Stable entries should have e above hull of zero!")
        for entry in self.pd.all_entries:
            if entry not in self.pd.stable_entries:
                e_ah = self.analyzer.get_e_above_hull(entry)
                self.assertGreaterEqual(e_ah, 0)
                self.assertTrue(isinstance(e_ah, Number))

    def test_get_equilibrium_reaction_energy(self):
        for entry in self.pd.stable_entries:
            self.assertLessEqual(
                self.analyzer.get_equilibrium_reaction_energy(entry), 0,
                "Stable entries should have negative equilibrium reaction energy!")

    def test_get_decomposition(self):
        for entry in self.pd.stable_entries:
            self.assertEquals(len(self.analyzer.get_decomposition(entry.composition)), 1,
                              "Stable composition should have only 1 decomposition!")
        dim = len(self.pd.elements)
        for entry in self.pd.all_entries:
            ndecomp = len(self.analyzer.get_decomposition(entry.composition))
            self.assertTrue(ndecomp > 0 and ndecomp <= dim,
                            "The number of decomposition phases can at most be equal to the number of components.")

        #Just to test decomp for a ficitious composition
        ansdict = {entry.composition.formula: amt
                   for entry, amt in
                   self.analyzer.get_decomposition(Composition("Li3Fe7O11")).items()}
        expected_ans = {"Fe2 O2": 0.0952380952380949,
                        "Li1 Fe1 O2": 0.5714285714285714,
                        "Fe6 O8": 0.33333333333333393}
        for k, v in expected_ans.items():
            self.assertAlmostEqual(ansdict[k], v)

    def test_get_transition_chempots(self):
        for el in self.pd.elements:
            self.assertLessEqual(len(self.analyzer.get_transition_chempots(el)),
                                 len(self.pd.facets))

    def test_get_element_profile(self):
        for el in self.pd.elements:
            for entry in self.pd.stable_entries:
                if not (entry.composition.is_element):
                    self.assertLessEqual(len(self.analyzer.get_element_profile(el, entry.composition)),
                                         len(self.pd.facets))

    def test_get_get_chempot_range_map(self):
        elements = [el for el in self.pd.elements if el.symbol != "Fe"]
        self.assertEqual(len(self.analyzer.get_chempot_range_map(elements)), 10)
开发者ID:bkappes,项目名称:pymatgen,代码行数:62,代码来源:test_pdanalyzer.py

示例2: test_get_stability

# 需要导入模块: from pymatgen.phasediagram.pdanalyzer import PDAnalyzer [as 别名]
# 或者: from pymatgen.phasediagram.pdanalyzer.PDAnalyzer import get_e_above_hull [as 别名]
 def test_get_stability(self):
     entries = self.rester.get_entries("Fe-O")
     modified_entries = []
     for entry in entries:
         # Create modified entries with energies that are 0.01eV higher
         # than the corresponding entries.
         if entry.composition.reduced_formula == "Fe2O3":
             modified_entries.append(
                 ComputedEntry(entry.composition,
                               entry.uncorrected_energy + 0.01,
                               parameters=entry.parameters,
                               entry_id="mod_{}".format(entry.entry_id)))
     rest_ehulls = self.rester.get_stability(modified_entries)
     all_entries = entries + modified_entries
     compat = MaterialsProjectCompatibility()
     all_entries = compat.process_entries(all_entries)
     pd = PhaseDiagram(all_entries)
     a = PDAnalyzer(pd)
     for e in all_entries:
         if str(e.entry_id).startswith("mod"):
             for d in rest_ehulls:
                 if d["entry_id"] == e.entry_id:
                     data = d
                     break
             self.assertAlmostEqual(a.get_e_above_hull(e),
                                    data["e_above_hull"])
开发者ID:brendaneng1,项目名称:pymatgen,代码行数:28,代码来源:test_rest.py

示例3: get_contour_pd_plot

# 需要导入模块: from pymatgen.phasediagram.pdanalyzer import PDAnalyzer [as 别名]
# 或者: from pymatgen.phasediagram.pdanalyzer.PDAnalyzer import get_e_above_hull [as 别名]
    def get_contour_pd_plot(self):
        """
        Plot a contour phase diagram plot, where phase triangles are colored
        according to degree of instability by interpolation. Currently only
        works for 3-component phase diagrams.

        Returns:
            A matplotlib plot object.
        """
        from scipy import interpolate
        from matplotlib import cm

        pd = self._pd
        entries = pd.qhull_entries
        data = np.array(pd.qhull_data)

        plt = self._get_2d_plot()
        analyzer = PDAnalyzer(pd)
        data[:, 0:2] = triangular_coord(data[:, 0:2]).transpose()
        for i, e in enumerate(entries):
            data[i, 2] = analyzer.get_e_above_hull(e)

        gridsize = 0.005
        xnew = np.arange(0, 1.0, gridsize)
        ynew = np.arange(0, 1, gridsize)

        f = interpolate.LinearNDInterpolator(data[:, 0:2], data[:, 2])
        znew = np.zeros((len(ynew), len(xnew)))
        for (i, xval) in enumerate(xnew):
            for (j, yval) in enumerate(ynew):
                znew[j, i] = f(xval, yval)

        plt.contourf(xnew, ynew, znew, 1000, cmap=cm.autumn_r)

        plt.colorbar()
        return plt
开发者ID:qimin,项目名称:pymatgen,代码行数:38,代码来源:plotter.py

示例4: PDAnalyzerTest

# 需要导入模块: from pymatgen.phasediagram.pdanalyzer import PDAnalyzer [as 别名]
# 或者: from pymatgen.phasediagram.pdanalyzer.PDAnalyzer import get_e_above_hull [as 别名]
class PDAnalyzerTest(unittest.TestCase):

    def setUp(self):
        module_dir = os.path.dirname(os.path.abspath(__file__))
        (elements, entries) = PDEntryIO.from_csv(os.path.join(module_dir,
                                                              "pdentries_test.csv"))
        self.pd = PhaseDiagram(entries)
        self.analyzer = PDAnalyzer(self.pd)

    def test_get_e_above_hull(self):
        for entry in self.pd.stable_entries:
            self.assertLess(self.analyzer.get_e_above_hull(entry), 1e-11,
                            "Stable entries should have e above hull of zero!")
        for entry in self.pd.all_entries:
            if entry not in self.pd.stable_entries:
                e_ah = self.analyzer.get_e_above_hull(entry)
                self.assertGreaterEqual(e_ah, 0)
                self.assertTrue(isinstance(e_ah, Number))

    def test_get_equilibrium_reaction_energy(self):
        for entry in self.pd.stable_entries:
            self.assertLessEqual(
                self.analyzer.get_equilibrium_reaction_energy(entry), 0,
                "Stable entries should have negative equilibrium reaction energy!")

    def test_get_decomposition(self):
        for entry in self.pd.stable_entries:
            self.assertEquals(len(self.analyzer.get_decomposition(entry.composition)), 1,
                              "Stable composition should have only 1 decomposition!")
        dim = len(self.pd.elements)
        for entry in self.pd.all_entries:
            ndecomp = len(self.analyzer.get_decomposition(entry.composition))
            self.assertTrue(ndecomp > 0 and ndecomp <= dim,
                            "The number of decomposition phases can at most be equal to the number of components.")

        #Just to test decomp for a ficitious composition
        ansdict = {entry.composition.formula: amt
                   for entry, amt in
                   self.analyzer.get_decomposition(Composition("Li3Fe7O11")).items()}
        expected_ans = {"Fe2 O2": 0.0952380952380949,
                        "Li1 Fe1 O2": 0.5714285714285714,
                        "Fe6 O8": 0.33333333333333393}
        for k, v in expected_ans.items():
            self.assertAlmostEqual(ansdict[k], v)

    def test_get_transition_chempots(self):
        for el in self.pd.elements:
            self.assertLessEqual(len(self.analyzer.get_transition_chempots(el)),
                                 len(self.pd.facets))

    def test_get_element_profile(self):
        for el in self.pd.elements:
            for entry in self.pd.stable_entries:
                if not (entry.composition.is_element):
                    self.assertLessEqual(len(self.analyzer.get_element_profile(el, entry.composition)),
                                         len(self.pd.facets))

    def test_get_get_chempot_range_map(self):
        elements = [el for el in self.pd.elements if el.symbol != "Fe"]
        self.assertEqual(len(self.analyzer.get_chempot_range_map(elements)), 10)

    def test_getmu_vertices_stability_phase(self):
        results = self.analyzer.getmu_vertices_stability_phase(Composition.from_formula("LiFeO2"), Element("O"))
        self.assertAlmostEqual(len(results), 6)
        test_equality = False
        for c in results:
            if abs(c[Element("O")]+7.115) < 1e-2 and abs(c[Element("Fe")]+6.596) < 1e-2 and \
                    abs(c[Element("Li")]+3.931) < 1e-2:
                test_equality = True
        self.assertTrue(test_equality,"there is an expected vertex missing in the list")


    def test_getmu_range_stability_phase(self):
        results = self.analyzer.get_chempot_range_stability_phase(
            Composition("LiFeO2"), Element("O"))
        self.assertAlmostEqual(results[Element("O")][1], -4.4501812249999997)
        self.assertAlmostEqual(results[Element("Fe")][0], -6.5961470999999996)
        self.assertAlmostEqual(results[Element("Li")][0], -3.6250022625000007)
开发者ID:malvo06,项目名称:pymatgen,代码行数:80,代码来源:test_pdanalyzer.py

示例5: PhaseDiagram

# 需要导入模块: from pymatgen.phasediagram.pdanalyzer import PDAnalyzer [as 别名]
# 或者: from pymatgen.phasediagram.pdanalyzer.PDAnalyzer import get_e_above_hull [as 别名]
        sys.exit()

    syms = [el.symbol for el in entry.composition.elements]
    #This gets all entries belonging to the relevant system.
    entries = a.get_entries_in_chemsys(syms)
    entries.append(entry)

    #Process entries with Materials Project compatibility.
    entries = compat.process_entries(entries)

    print [e.composition.reduced_formula for e in entries]

    pd = PhaseDiagram(entries)

    analyzer = PDAnalyzer(pd)
    ehull = analyzer.get_e_above_hull(entry) * 1000

    print "Run contains formula {} with corrected energy {:.3f} eV.".format(
        entry.composition, entry.energy
    )
    print "Energy above convex hull = {:.1f} meV".format(ehull)
    if ehull < 1:
        print "Entry is stable."
    elif ehull < 30:
        print "Entry is metastable and could be stable at finite temperatures."
    elif ehull < 50:
        print "Entry has a low probability of being stable."
    else:
        print "Entry is very unlikely to be stable."

    if ehull > 0:
开发者ID:czhengsci,项目名称:tscccommand,代码行数:33,代码来源:stability_check.py

示例6: _get_2d_plot

# 需要导入模块: from pymatgen.phasediagram.pdanalyzer import PDAnalyzer [as 别名]
# 或者: from pymatgen.phasediagram.pdanalyzer.PDAnalyzer import get_e_above_hull [as 别名]

#.........这里部分代码省略.........
        font.set_weight("bold")
        font.set_size(24)

        # Sets a nice layout depending on the type of PD. Also defines a
        # "center" for the PD, which then allows the annotations to be spread
        # out in a nice manner.
        if len(self._pd.elements) == 3:
            plt.axis("equal")
            plt.xlim((-0.1, 1.2))
            plt.ylim((-0.1, 1.0))
            plt.axis("off")
            center = (0.5, math.sqrt(3) / 6)
        else:
            all_coords = labels.keys()
            miny = min([c[1] for c in all_coords])
            ybuffer = max(abs(miny) * 0.1, 0.1)
            plt.xlim((-0.1, 1.1))
            plt.ylim((miny - ybuffer, ybuffer))
            center = (0.5, miny / 2)
            plt.xlabel("Fraction", fontsize=28, fontweight='bold')
            plt.ylabel("Formation energy (eV/fu)", fontsize=28,
                       fontweight='bold')

        for coords in sorted(labels.keys(), key=lambda x: -x[1]):
            entry = labels[coords]
            label = entry.name

            # The follow defines an offset for the annotation text emanating
            # from the center of the PD. Results in fairly nice layouts for the
            # most part.
            vec = (np.array(coords) - center)
            vec = vec / np.linalg.norm(vec) * 10 if np.linalg.norm(vec) != 0 \
                else vec
            valign = "bottom" if vec[1] > 0 else "top"
            if vec[0] < -0.01:
                halign = "right"
            elif vec[0] > 0.01:
                halign = "left"
            else:
                halign = "center"
            if label_stable:
                if process_attributes and entry.attribute == 'new':
                    plt.annotate(latexify(label), coords, xytext=vec,
                                 textcoords="offset points",
                                 horizontalalignment=halign,
                                 verticalalignment=valign,
                                 fontproperties=font,
                                 color='g')
                else:
                    plt.annotate(latexify(label), coords, xytext=vec,
                                 textcoords="offset points",
                                 horizontalalignment=halign,
                                 verticalalignment=valign,
                                 fontproperties=font)

        if self.show_unstable:
            font = FontProperties()
            font.set_size(16)
            pda = PDAnalyzer(self._pd)
            energies_unstable = [pda.get_e_above_hull(entry)
                                 for entry, coord in unstable.items()]
            if energy_colormap is not None:
                energies.extend(energies_unstable)
                vals_unstable = _map.to_rgba(energies_unstable)
            ii = 0
            for entry, coords in unstable.items():
                vec = (np.array(coords) - center)
                vec = vec / np.linalg.norm(vec) * 10 \
                    if np.linalg.norm(vec) != 0 else vec
                label = entry.name
                if energy_colormap is None:
                    plt.plot(coords[0], coords[1], "ks", linewidth=3,
                             markeredgecolor="k", markerfacecolor="r",
                             markersize=8)
                else:
                    plt.plot(coords[0], coords[1], "s", linewidth=3,
                             markeredgecolor="k",
                             markerfacecolor=vals_unstable[ii],
                             markersize=8)
                if label_unstable:
                    plt.annotate(latexify(label), coords, xytext=vec,
                                 textcoords="offset points",
                                 horizontalalignment=halign, color="b",
                                 verticalalignment=valign,
                                 fontproperties=font)
                ii += 1
        if energy_colormap is not None and show_colorbar:
            _map.set_array(energies)
            cbar = plt.colorbar(_map)
            cbar.set_label(
                'Energy [meV/at] above hull (in red)\nInverse energy ['
                'meV/at] above hull (in green)',
                rotation=-90, ha='left', va='center')
            ticks = cbar.ax.get_yticklabels()
            cbar.ax.set_yticklabels(['${v}$'.format(
                v=float(t.get_text().strip('$'))*1000.0) for t in ticks])
        f = plt.gcf()
        f.set_size_inches((8, 6))
        plt.subplots_adjust(left=0.09, right=0.98, top=0.98, bottom=0.07)
        return plt
开发者ID:Bismarrck,项目名称:pymatgen,代码行数:104,代码来源:plotter.py


注:本文中的pymatgen.phasediagram.pdanalyzer.PDAnalyzer.get_e_above_hull方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。