本文整理汇总了Python中pymatgen.phasediagram.pdanalyzer.PDAnalyzer.get_element_profile方法的典型用法代码示例。如果您正苦于以下问题:Python PDAnalyzer.get_element_profile方法的具体用法?Python PDAnalyzer.get_element_profile怎么用?Python PDAnalyzer.get_element_profile使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pymatgen.phasediagram.pdanalyzer.PDAnalyzer
的用法示例。
在下文中一共展示了PDAnalyzer.get_element_profile方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: PDAnalyzerTest
# 需要导入模块: from pymatgen.phasediagram.pdanalyzer import PDAnalyzer [as 别名]
# 或者: from pymatgen.phasediagram.pdanalyzer.PDAnalyzer import get_element_profile [as 别名]
class PDAnalyzerTest(unittest.TestCase):
def setUp(self):
module_dir = os.path.dirname(os.path.abspath(__file__))
(elements, entries) = PDEntryIO.from_csv(os.path.join(module_dir,
"pdentries_test.csv"))
self.pd = PhaseDiagram(entries)
self.analyzer = PDAnalyzer(self.pd)
def test_get_e_above_hull(self):
for entry in self.pd.stable_entries:
self.assertLess(self.analyzer.get_e_above_hull(entry), 1e-11,
"Stable entries should have e above hull of zero!")
for entry in self.pd.all_entries:
if entry not in self.pd.stable_entries:
e_ah = self.analyzer.get_e_above_hull(entry)
self.assertGreaterEqual(e_ah, 0)
self.assertTrue(isinstance(e_ah, Number))
def test_get_equilibrium_reaction_energy(self):
for entry in self.pd.stable_entries:
self.assertLessEqual(
self.analyzer.get_equilibrium_reaction_energy(entry), 0,
"Stable entries should have negative equilibrium reaction energy!")
def test_get_decomposition(self):
for entry in self.pd.stable_entries:
self.assertEquals(len(self.analyzer.get_decomposition(entry.composition)), 1,
"Stable composition should have only 1 decomposition!")
dim = len(self.pd.elements)
for entry in self.pd.all_entries:
ndecomp = len(self.analyzer.get_decomposition(entry.composition))
self.assertTrue(ndecomp > 0 and ndecomp <= dim,
"The number of decomposition phases can at most be equal to the number of components.")
#Just to test decomp for a ficitious composition
ansdict = {entry.composition.formula: amt
for entry, amt in
self.analyzer.get_decomposition(Composition("Li3Fe7O11")).items()}
expected_ans = {"Fe2 O2": 0.0952380952380949,
"Li1 Fe1 O2": 0.5714285714285714,
"Fe6 O8": 0.33333333333333393}
for k, v in expected_ans.items():
self.assertAlmostEqual(ansdict[k], v)
def test_get_transition_chempots(self):
for el in self.pd.elements:
self.assertLessEqual(len(self.analyzer.get_transition_chempots(el)),
len(self.pd.facets))
def test_get_element_profile(self):
for el in self.pd.elements:
for entry in self.pd.stable_entries:
if not (entry.composition.is_element):
self.assertLessEqual(len(self.analyzer.get_element_profile(el, entry.composition)),
len(self.pd.facets))
def test_get_get_chempot_range_map(self):
elements = [el for el in self.pd.elements if el.symbol != "Fe"]
self.assertEqual(len(self.analyzer.get_chempot_range_map(elements)), 10)
示例2: from_composition_and_pd
# 需要导入模块: from pymatgen.phasediagram.pdanalyzer import PDAnalyzer [as 别名]
# 或者: from pymatgen.phasediagram.pdanalyzer.PDAnalyzer import get_element_profile [as 别名]
def from_composition_and_pd(comp, pd, working_ion_symbol="Li"):
"""
Convenience constructor to make a ConversionElectrode from a
composition and a phase diagram.
Args:
comp:
Starting composition for ConversionElectrode, e.g.,
Composition("FeF3")
pd:
A PhaseDiagram of the relevant system (e.g., Li-Fe-F)
working_ion_symbol:
Element symbol of working ion. Defaults to Li.
"""
working_ion = Element(working_ion_symbol)
entry = None
working_ion_entry = None
for e in pd.stable_entries:
if e.composition.reduced_formula == comp.reduced_formula:
entry = e
elif e.is_element and \
e.composition.reduced_formula == working_ion_symbol:
working_ion_entry = e
if not entry:
raise ValueError("Not stable compound found at composition {}."
.format(comp))
analyzer = PDAnalyzer(pd)
profile = analyzer.get_element_profile(working_ion, comp)
# Need to reverse because voltage goes form most charged to most
# discharged.
profile.reverse()
if len(profile) < 2:
return None
working_ion_entry = working_ion_entry
working_ion = working_ion_entry.composition.elements[0].symbol
normalization_els = {}
for el, amt in comp.items():
if el != Element(working_ion):
normalization_els[el] = amt
vpairs = [ConversionVoltagePair.from_steps(profile[i], profile[i + 1],
normalization_els)
for i in range(len(profile) - 1)]
return ConversionElectrode(vpairs, working_ion_entry, comp)
示例3: PDAnalyzerTest
# 需要导入模块: from pymatgen.phasediagram.pdanalyzer import PDAnalyzer [as 别名]
# 或者: from pymatgen.phasediagram.pdanalyzer.PDAnalyzer import get_element_profile [as 别名]
class PDAnalyzerTest(unittest.TestCase):
def setUp(self):
module_dir = os.path.dirname(os.path.abspath(__file__))
(elements, entries) = PDEntryIO.from_csv(os.path.join(module_dir,
"pdentries_test.csv"))
self.pd = PhaseDiagram(entries)
self.analyzer = PDAnalyzer(self.pd)
def test_get_e_above_hull(self):
for entry in self.pd.stable_entries:
self.assertLess(self.analyzer.get_e_above_hull(entry), 1e-11,
"Stable entries should have e above hull of zero!")
for entry in self.pd.all_entries:
if entry not in self.pd.stable_entries:
e_ah = self.analyzer.get_e_above_hull(entry)
self.assertGreaterEqual(e_ah, 0)
self.assertTrue(isinstance(e_ah, Number))
def test_get_equilibrium_reaction_energy(self):
for entry in self.pd.stable_entries:
self.assertLessEqual(
self.analyzer.get_equilibrium_reaction_energy(entry), 0,
"Stable entries should have negative equilibrium reaction energy!")
def test_get_decomposition(self):
for entry in self.pd.stable_entries:
self.assertEquals(len(self.analyzer.get_decomposition(entry.composition)), 1,
"Stable composition should have only 1 decomposition!")
dim = len(self.pd.elements)
for entry in self.pd.all_entries:
ndecomp = len(self.analyzer.get_decomposition(entry.composition))
self.assertTrue(ndecomp > 0 and ndecomp <= dim,
"The number of decomposition phases can at most be equal to the number of components.")
#Just to test decomp for a ficitious composition
ansdict = {entry.composition.formula: amt
for entry, amt in
self.analyzer.get_decomposition(Composition("Li3Fe7O11")).items()}
expected_ans = {"Fe2 O2": 0.0952380952380949,
"Li1 Fe1 O2": 0.5714285714285714,
"Fe6 O8": 0.33333333333333393}
for k, v in expected_ans.items():
self.assertAlmostEqual(ansdict[k], v)
def test_get_transition_chempots(self):
for el in self.pd.elements:
self.assertLessEqual(len(self.analyzer.get_transition_chempots(el)),
len(self.pd.facets))
def test_get_element_profile(self):
for el in self.pd.elements:
for entry in self.pd.stable_entries:
if not (entry.composition.is_element):
self.assertLessEqual(len(self.analyzer.get_element_profile(el, entry.composition)),
len(self.pd.facets))
def test_get_get_chempot_range_map(self):
elements = [el for el in self.pd.elements if el.symbol != "Fe"]
self.assertEqual(len(self.analyzer.get_chempot_range_map(elements)), 10)
def test_getmu_vertices_stability_phase(self):
results = self.analyzer.getmu_vertices_stability_phase(Composition.from_formula("LiFeO2"), Element("O"))
self.assertAlmostEqual(len(results), 6)
test_equality = False
for c in results:
if abs(c[Element("O")]+7.115) < 1e-2 and abs(c[Element("Fe")]+6.596) < 1e-2 and \
abs(c[Element("Li")]+3.931) < 1e-2:
test_equality = True
self.assertTrue(test_equality,"there is an expected vertex missing in the list")
def test_getmu_range_stability_phase(self):
results = self.analyzer.get_chempot_range_stability_phase(
Composition("LiFeO2"), Element("O"))
self.assertAlmostEqual(results[Element("O")][1], -4.4501812249999997)
self.assertAlmostEqual(results[Element("Fe")][0], -6.5961470999999996)
self.assertAlmostEqual(results[Element("Li")][0], -3.6250022625000007)