当前位置: 首页>>代码示例>>Python>>正文


Python ClassificationDataSet.getField方法代码示例

本文整理汇总了Python中pybrain.datasets.ClassificationDataSet.getField方法的典型用法代码示例。如果您正苦于以下问题:Python ClassificationDataSet.getField方法的具体用法?Python ClassificationDataSet.getField怎么用?Python ClassificationDataSet.getField使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pybrain.datasets.ClassificationDataSet的用法示例。


在下文中一共展示了ClassificationDataSet.getField方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ClassificationDataSet

# 需要导入模块: from pybrain.datasets import ClassificationDataSet [as 别名]
# 或者: from pybrain.datasets.ClassificationDataSet import getField [as 别名]
har_data=pd.read_csv('./HAR3.csv');

har_test_data = har_data.iloc[100000:110000,0:17];
har_test_label = har_data.iloc[100000:110000,17:18];

#error = 0.0120909090909
clf1 = joblib.load('./clfGB.pkl'); 
predict_test = clf1.predict(har_test_data);
test_accuracy_gb = clf1.score(har_test_data, har_test_label);
test_error_gb = 1-test_accuracy_gb;

#nn error = 0.245666666667
fnn = joblib.load('./nn.pkl');
alldata = ClassificationDataSet(17, nb_classes=5);
for i in range(len(har_test_data)): 
    t=int(har_test_label.iloc[i])-1;
    alldata.addSample(har_test_data.iloc[i],[t]);
alldata._convertToOneOfMany(bounds=[0, 1]);
out = fnn.activateOnDataset(alldata);
out = out.argmax(axis=1);
out2=alldata.getField('target').argmax(axis=1);
length = len(out);
count=0;
for i in range(len(out)):
    if out[i]!=out2[i]:
        count+=1;
test_error_nn = float(count)/float(length);
test_accuracy_nn = 1-test_error_nn;

开发者ID:ENOONE,项目名称:Classification-of-Body-Postures-and-Movements,代码行数:30,代码来源:testCombine.py

示例2: float

# 需要导入模块: from pybrain.datasets import ClassificationDataSet [as 别名]
# 或者: from pybrain.datasets.ClassificationDataSet import getField [as 别名]
                    ratio = float(float(num) / float(len(possibilities[names[i]])))
                    nr.append(ratio)    
                print ratio, column   
            else:
                print column, "not an int or long", possibilities[names[i]], names[i]     
    return np.array(nr[:-1]), nr[-1]
 
dataset = ClassificationDataSet(46, 1, class_labels=possibilities['readmitted'])
for row in cursor.execute("select %s from diabetic_data limit 0, 10000" % columns):
    xd, yd = createNPRow(row)       
    dataset.addSample(xd, yd)

nn = buildNetwork(dataset.indim, 20, dataset.outdim, outclass=SoftmaxLayer)
trainer = BackpropTrainer(nn, dataset=dataset, momentum=0.1, verbose=True, weightdecay=0.01)
print possibilities['readmitted']
print dataset.getField('target')
for x in range(10):
    error = trainer.train()
    print error
   
errors, success = 0,0
for row in cursor.execute("select %s from diabetic_data limit 50000, 101766" % columns):    
    xd, yd = createNPRow(row)    
    check = int(round(nn.activate(xd[:46])[0]))    
    if check > 1: check = 1
    prediction = possibilities['readmitted'][check]
    actual = possibilities['readmitted'][yd]
    if prediction == actual:
        match = "match"
        success += 1
    else:
开发者ID:richwandell,项目名称:python_machine_learning,代码行数:33,代码来源:neural_network.py

示例3: range

# 需要导入模块: from pybrain.datasets import ClassificationDataSet [as 别名]
# 或者: from pybrain.datasets.ClassificationDataSet import getField [as 别名]
    category+=1

category = 0

for shape in shapes:
    for i in range(8):
        image = imread('C:/Users/alexis.matelin/Documents/Neural Networks/Visual classification/shapes/testing/'+shape+str(i+1)+'.png', as_grey=True, plugin=None, flatten=None)
        image_vector = image.flatten()
        ds_testing.appendLinked(image_vector, [category])
       


   
ds_training.calculateStatistics()
ds_training.getClass(0)
print(ds_training.getField('target'))

ds_training._convertToOneOfMany(bounds=[0, 1])
ds_testing._convertToOneOfMany(bounds=[0, 1])
print(ds_training.getField('target'))
        


net = buildNetwork(1024,12, 12, 3, hiddenclass = TanhLayer, outclass=SoftmaxLayer)
trainer = BackpropTrainer(net, dataset=ds_training, verbose=True, learningrate=0.01)


trainer.trainUntilConvergence()

out = net.activateOnDataset(ds_testing)
out = out.argmax(axis=1) 
开发者ID:amatelin,项目名称:neural-networks,代码行数:33,代码来源:Image_processing.py

示例4: range

# 需要导入模块: from pybrain.datasets import ClassificationDataSet [as 别名]
# 或者: from pybrain.datasets.ClassificationDataSet import getField [as 别名]
for i in range( epochs ):
	mse = trainer.train()
	rmse = sqrt(mse)
	print "training RMSE, epoch {}: {}".format( i + 1, rmse )

#trainer.trainUntilConvergence( verbose = True, validationProportion = 0.15, maxEpochs = 1000, continueEpochs = 10 )

lb = preprocessing.LabelBinarizer()
lb.fit(YtestPos)
list(lb.classes_)
YtestPos = lb.transform(YtestPos)

ds.setField( 'input', XtestPos )
ds.setField( 'target', YtestPos )
x = ds.getField('input')
y = ds.getField('target')

trnresult = percentError( trainer.testOnClassData(),trndata['class'] )
tstresult = percentError( trainer.testOnClassData(dataset=x ), YtestPos.T )

print "epoch: %4d" % trainer.totalepochs, "  train error: %5.2f%%" % trnresult, 
" test error: %5.2f%%" % tstresult







开发者ID:sankar-mukherjee,项目名称:CoFee,代码行数:24,代码来源:NN-pybrain.py


注:本文中的pybrain.datasets.ClassificationDataSet.getField方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。