当前位置: 首页>>代码示例>>Python>>正文


Python ClassificationDataSet.assignClasses方法代码示例

本文整理汇总了Python中pybrain.datasets.ClassificationDataSet.assignClasses方法的典型用法代码示例。如果您正苦于以下问题:Python ClassificationDataSet.assignClasses方法的具体用法?Python ClassificationDataSet.assignClasses怎么用?Python ClassificationDataSet.assignClasses使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pybrain.datasets.ClassificationDataSet的用法示例。


在下文中一共展示了ClassificationDataSet.assignClasses方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_dataset

# 需要导入模块: from pybrain.datasets import ClassificationDataSet [as 别名]
# 或者: from pybrain.datasets.ClassificationDataSet import assignClasses [as 别名]
def create_dataset(filename):
    dataset = ClassificationDataSet(13, 1, class_labels=['0', '1', '2'])
    football_data = FootballDataCsv(filename)
    total_min = football_data.total_min()
    total_max = football_data.total_max()
    for data in football_data:
        normalized_features = [normalize(x, min_value=total_min, max_value=total_max) for x in data.to_list()]
        dataset.addSample(normalized_features, [data.binarized_output])
    dataset.assignClasses()
    dataset._convertToOneOfMany()
    return dataset
开发者ID:rsiera,项目名称:pybrain_examples,代码行数:13,代码来源:utils.py

示例2: generateClassificationData

# 需要导入模块: from pybrain.datasets import ClassificationDataSet [as 别名]
# 或者: from pybrain.datasets.ClassificationDataSet import assignClasses [as 别名]
def generateClassificationData(size, nClasses=3):
    """ generate a set of points in 2D belonging to two or three different classes """
    if nClasses==3:
        means = [(-1,0),(2,4),(3,1)]
    else:
        means = [(-2,0),(2,1),(6,0)]

    cov = [diag([1,1]), diag([0.5,1.2]), diag([1.5,0.7])]
    dataset = ClassificationDataSet(2, 1, nb_classes=nClasses)
    for _ in xrange(size):
        for c in range(3):
            input = multivariate_normal(means[c],cov[c])
            dataset.addSample(input, [c%nClasses])
    dataset.assignClasses()
    return dataset
开发者ID:HKou,项目名称:pybrain,代码行数:17,代码来源:datagenerator.py

示例3: generate_data

# 需要导入模块: from pybrain.datasets import ClassificationDataSet [as 别名]
# 或者: from pybrain.datasets.ClassificationDataSet import assignClasses [as 别名]
def generate_data( hour_to_use_app = 10):
    """
        Generate sample data to verify a classification learning NN. 
    """
    dataset = ClassificationDataSet(4, 1, nb_classes=2)
    for month in xrange(1,12):  # month 12 reserved for tests
        for day in xrange(1,8):
            for hour in xrange(0,24):
                for minute in xrange(1,7):
                    if hour == hour_to_use_app :
                        c = 1
                    else :
                        c = 0
                    input = [month,day,hour,minute]
                    dataset.addSample(input, [c])
    dataset.assignClasses()
    return dataset
开发者ID:tweksteen,项目名称:neuralsession,代码行数:19,代码来源:generatedata.py

示例4: range

# 需要导入模块: from pybrain.datasets import ClassificationDataSet [as 别名]
# 或者: from pybrain.datasets.ClassificationDataSet import assignClasses [as 别名]
# 0 is red, 1 is blue
color_class = [
    0, 0, 0, 0,
    0, 0, 0, 0,
    1, 1, 1, 1,
    1, 1, 1, 1
    ]

# add samples to dataset
for i in range(len(color)):
    indata = color[i]
    outdata = color_class[i]
    trndata.addSample(indata, [outdata])
    print('[%d, %d, %d], [%d]' % (indata[0], indata[1], indata[2], outdata))
trndata.assignClasses()

net = buildNetwork(trndata.indim, 6, trndata.outdim)
# net = buildNetwork(
#    trndata.indim, 6, trndata.outdim, recurrent=False, bias=False
#    )
trainer = BackpropTrainer(
    net, dataset=trndata, learningrate=0.01, momentum=0.5, verbose=True
    )

# # train on dataset with X epochs
# t.trainOnDataset(ds, 50)
# t.testOnData(verbose=True)

print('')
开发者ID:grik,项目名称:cc,代码行数:31,代码来源:fnn_addons.py


注:本文中的pybrain.datasets.ClassificationDataSet.assignClasses方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。