本文整理汇总了Python中pyNN.utility.Timer.start方法的典型用法代码示例。如果您正苦于以下问题:Python Timer.start方法的具体用法?Python Timer.start怎么用?Python Timer.start使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyNN.utility.Timer
的用法示例。
在下文中一共展示了Timer.start方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: thread
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
host_name = socket.gethostname()
print "Host #%d is on %s" % (node_id+1, host_name)
print "%s Initialising the simulator with %d thread(s)..." % (node_id, extra['threads'])
cell_params = {
'tau_m' : tau_m, 'tau_syn_E' : tau_exc, 'tau_syn_I' : tau_inh,
'v_rest' : E_leak, 'v_reset' : v_reset, 'v_thresh' : v_thresh,
'cm' : cm, 'tau_refrac' : t_refrac}
if (benchmark == "COBA"):
cell_params['e_rev_E'] = Erev_exc
cell_params['e_rev_I'] = Erev_inh
timer.start()
print "%s Creating cell populations..." % node_id
all_cells = Population(n_exc+n_inh, celltype(**cell_params), label="All Cells")
exc_cells = all_cells[:n_exc]; exc_cells.label = "Excitatory cells"
inh_cells = all_cells[n_exc:]; inh_cells.label = "Inhibitory cells"
if benchmark == "COBA":
ext_stim = Population(20, SpikeSourcePoisson(rate=rate, duration=stim_dur), label="expoisson")
rconn = 0.01
ext_conn = FixedProbabilityConnector(rconn)
ext_syn = StaticSynapse(weight=0.1)
print "%s Initialising membrane potential to random values..." % node_id
rng = NumpyRNG(seed=rngseed, parallel_safe=parallel_safe)
uniformDistr = RandomDistribution('uniform', [v_reset,v_thresh], rng=rng)
all_cells.initialize(v=uniformDistr)
示例2: spike_times
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
cortical_delay = 0.1
# ================= Simulation time ==================
dt = 1.0 # Simulation's time step
delay_min = 1.0 # Minimum delay
delay_max = 5.0 # Maximum delay
#############################
# Build the Network
#############################
# Has to be called at the beginning of the simulation
simulator.setup(timestep=dt, min_delay=delay_min, max_delay=delay_max)
timer.start() # start timer on construction
# ================== LGN ========================
# Load LGN positions
positions_on, positions_off = load_positions()
## Load the spikes
spikes_on, spikes_off = load_lgn_spikes(contrast, N_lgn_layers)
# Spike functions
def spike_times(simulator, layer, spikes_file):
return [simulator.Sequence(x) for x in spikes_file[layer]]
# Spatial structure of on LGN cells
# On cells
示例3: test
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
def test(cases=[1]):
sp = Space(periodic_boundaries=((0, 1), (0, 1), None), axes="xy")
safe = False
callback = progress_bar.set_level
autapse = False
parallel_safe = True
render = True
to_file = True
for case in cases:
# w = RandomDistribution('uniform', (0,1))
w = "0.2 + d/0.2"
# w = 0.1
# w = lambda dist : 0.1 + numpy.random.rand(len(dist[0]))*sqrt(dist[0]**2 + dist[1]**2)
# delay = RandomDistribution('uniform', (0.1,5.))
# delay = "0.1 + d/0.2"
delay = 0.1
# delay = lambda distances : 0.1 + numpy.random.rand(len(distances))*distances
d_expression = "exp(-d**2/(2*0.1**2))"
# d_expression = "(d[0] < 0.05) & (d[1] < 0.05)"
# d_expression = "(d[0]/(0.05**2) + d[1]/(0.1**2)) < 100*numpy.random.rand()"
timer = Timer()
np = num_processes()
timer.start()
synapse = StaticSynapse(weight=w, delay=delay)
rng = NumpyRNG(23434, parallel_safe=parallel_safe)
if case is 1:
conn = DistanceDependentProbabilityConnector(
d_expression, safe=safe, callback=callback, allow_self_connections=autapse, rng=rng
)
fig_name = "DistanceDependent_%s_np_%d.png" % (simulator_name, np)
elif case is 2:
conn = FixedProbabilityConnector(
0.02, safe=safe, callback=callback, allow_self_connections=autapse, rng=rng
)
fig_name = "FixedProbability_%s_np_%d.png" % (simulator_name, np)
elif case is 3:
conn = AllToAllConnector(delays=delay, safe=safe, callback=callback, allow_self_connections=autapse)
fig_name = "AllToAll_%s_np_%d.png" % (simulator_name, np)
elif case is 4:
conn = FixedNumberPostConnector(50, safe=safe, callback=callback, allow_self_connections=autapse, rng=rng)
fig_name = "FixedNumberPost_%s_np_%d.png" % (simulator_name, np)
elif case is 5:
conn = FixedNumberPreConnector(50, safe=safe, callback=callback, allow_self_connections=autapse, rng=rng)
fig_name = "FixedNumberPre_%s_np_%d.png" % (simulator_name, np)
elif case is 6:
conn = OneToOneConnector(safe=safe, callback=callback)
fig_name = "OneToOne_%s_np_%d.png" % (simulator_name, np)
elif case is 7:
conn = FromFileConnector(
files.NumpyBinaryFile("Results/connections.dat", mode="r"),
safe=safe,
callback=callback,
distributed=True,
)
fig_name = "FromFile_%s_np_%d.png" % (simulator_name, np)
elif case is 8:
conn = SmallWorldConnector(
degree=0.1, rewiring=0.0, safe=safe, callback=callback, allow_self_connections=autapse
)
fig_name = "SmallWorld_%s_np_%d.png" % (simulator_name, np)
print "Generating data for %s" % fig_name
prj = Projection(x, x, conn, synapse, space=sp)
mytime = timer.diff()
print "Time to connect the cell population:", mytime, "s"
print "Nb synapses built", prj.size()
if to_file:
if not (os.path.isdir("Results")):
os.mkdir("Results")
print "Saving Connections...."
prj.save("all", files.NumpyBinaryFile("Results/connections.dat", mode="w"), gather=True)
mytime = timer.diff()
print "Time to save the projection:", mytime, "s"
if render and to_file:
print "Saving Positions...."
x.save_positions("Results/positions.dat")
end()
if node_id == 0 and render and to_file:
figure()
print "Generating and saving %s" % fig_name
positions = numpy.loadtxt("Results/positions.dat")
positions[:, 0] -= positions[:, 0].min()
connections = files.NumpyBinaryFile("Results/connections.dat", mode="r").read()
print positions.shape, connections.shape
connections[:, 0] -= connections[:, 0].min()
connections[:, 1] -= connections[:, 1].min()
#.........这里部分代码省略.........
示例4: run_retina
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
def run_retina(params):
"""Run the retina using the specified parameters."""
print "Setting up simulation"
timer = Timer()
timer.start() # start timer on construction
pyNN.setup(timestep=params['dt'], max_delay=params['syn_delay'], threads=params['threads'], rng_seeds=params['kernelseeds'])
N = params['N']
phr_ON = pyNN.Population((N, N), pyNN.native_cell_type('dc_generator')())
phr_OFF = pyNN.Population((N, N), pyNN.native_cell_type('dc_generator')())
noise_ON = pyNN.Population((N, N), pyNN.native_cell_type('noise_generator')(mean=0.0, std=params['noise_std']))
noise_OFF = pyNN.Population((N, N), pyNN.native_cell_type('noise_generator')(mean=0.0, std=params['noise_std']))
phr_ON.set(start=params['simtime']/4, stop=params['simtime']/4*3,
amplitude=params['amplitude'] * params['snr'])
phr_OFF.set(start=params['simtime']/4, stop=params['simtime']/4*3,
amplitude=-params['amplitude'] * params['snr'])
# target ON and OFF populations
v_init = params['parameters_gc'].pop('Vinit')
out_ON = pyNN.Population((N, N), pyNN.native_cell_type('iaf_cond_exp_sfa_rr')(**params['parameters_gc']))
out_OFF = pyNN.Population((N, N), pyNN.native_cell_type('iaf_cond_exp_sfa_rr')(**params['parameters_gc']))
out_ON.initialize(v=v_init)
out_OFF.initialize(v=v_init)
#print "Connecting the network"
retina_proj_ON = pyNN.Projection(phr_ON, out_ON, pyNN.OneToOneConnector())
retina_proj_ON.set(weight=params['weight'])
retina_proj_OFF = pyNN.Projection(phr_OFF, out_OFF, pyNN.OneToOneConnector())
retina_proj_OFF.set(weight=params['weight'])
noise_proj_ON = pyNN.Projection(noise_ON, out_ON, pyNN.OneToOneConnector())
noise_proj_ON.set(weight=params['weight'])
noise_proj_OFF = pyNN.Projection(noise_OFF, out_OFF, pyNN.OneToOneConnector())
noise_proj_OFF.set(weight=params['weight'])
out_ON.record('spikes')
out_OFF.record('spikes')
# reads out time used for building
buildCPUTime = timer.elapsedTime()
print "Running simulation"
timer.start() # start timer on construction
pyNN.run(params['simtime'])
simCPUTime = timer.elapsedTime()
out_ON_DATA = out_ON.get_data().segments[0]
out_OFF_DATA = out_OFF.get_data().segments[0]
print "\nRetina Network Simulation:"
print(params['description'])
print "Number of Neurons : ", N**2
print "Output rate (ON) : ", out_ON.mean_spike_count(), \
"spikes/neuron in ", params['simtime'], "ms"
print "Output rate (OFF) : ", out_OFF.mean_spike_count(), \
"spikes/neuron in ", params['simtime'], "ms"
print "Build time : ", buildCPUTime, "s"
print "Simulation time : ", simCPUTime, "s"
return out_ON_DATA, out_OFF_DATA
示例5: NetworkModel
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
class NetworkModel(object):
def __init__(self, params, comm):
self.params = params
self.debug_connectivity = True
self.comm = comm
if self.comm != None:
self.pc_id, self.n_proc = self.comm.rank, self.comm.size
print "USE_MPI: yes", "\tpc_id, n_proc:", self.pc_id, self.n_proc
else:
self.pc_id, self.n_proc = 0, 1
print "MPI not used"
np.random.seed(params["np_random_seed"] + self.pc_id)
if self.params["with_short_term_depression"]:
self.short_term_depression = SynapseDynamics(
fast=TsodyksMarkramMechanism(U=0.95, tau_rec=10.0, tau_facil=0.0)
)
def import_pynn(self):
"""
This function needs only be called when this class is used in another script as imported module
"""
import pyNN
exec ("from pyNN.%s import *" % self.params["simulator"])
print "import pyNN\npyNN.version: ", pyNN.__version__
def setup(self, load_tuning_prop=False, times={}):
self.projections = {}
self.projections["ee"] = []
self.projections["ei"] = []
self.projections["ie"] = []
self.projections["ii"] = []
if not load_tuning_prop:
self.tuning_prop_exc = utils.set_tuning_prop(
self.params, mode="hexgrid", cell_type="exc"
) # set the tuning properties of exc cells: space (x, y) and velocity (u, v)
self.tuning_prop_inh = utils.set_tuning_prop(
self.params, mode="hexgrid", cell_type="inh"
) # set the tuning properties of exc cells: space (x, y) and velocity (u, v)
else:
self.tuning_prop_exc = np.loadtxt(self.params["tuning_prop_means_fn"])
self.tuning_prop_inh = np.loadtxt(self.params["tuning_prop_inh_fn"])
indices, distances = utils.sort_gids_by_distance_to_stimulus(
self.tuning_prop_exc, self.params["motion_params"], self.params
) # cells in indices should have the highest response to the stimulus
if self.pc_id == 0:
print "Saving tuning_prop to file:", self.params["tuning_prop_means_fn"]
np.savetxt(self.params["tuning_prop_means_fn"], self.tuning_prop_exc)
print "Saving tuning_prop to file:", self.params["tuning_prop_inh_fn"]
np.savetxt(self.params["tuning_prop_inh_fn"], self.tuning_prop_inh)
print "Saving gids to record to: ", self.params["gids_to_record_fn"]
np.savetxt(self.params["gids_to_record_fn"], indices[: self.params["n_gids_to_record"]], fmt="%d")
# np.savetxt(params['gids_to_record_fn'], indices[:params['n_gids_to_record']], fmt='%d')
if self.comm != None:
self.comm.Barrier()
from pyNN.utility import Timer
self.timer = Timer()
self.timer.start()
self.times = times
self.times["t_all"] = 0
# # # # # # # # # # # #
# S E T U P #
# # # # # # # # # # # #
(delay_min, delay_max) = self.params["delay_range"]
setup(timestep=0.1, min_delay=delay_min, max_delay=delay_max, rng_seeds_seed=self.params["seed"])
rng_v = NumpyRNG(
seed=sim_cnt * 3147 + self.params["seed"], parallel_safe=True
) # if True, slower but does not depend on number of nodes
self.rng_conn = NumpyRNG(
seed=self.params["seed"], parallel_safe=True
) # if True, slower but does not depend on number of nodes
# # # # # # # # # # # # # # # # # # # # # # # # #
# R A N D O M D I S T R I B U T I O N S #
# # # # # # # # # # # # # # # # # # # # # # # # #
self.v_init_dist = RandomDistribution(
"normal",
(self.params["v_init"], self.params["v_init_sigma"]),
rng=rng_v,
constrain="redraw",
boundaries=(-80, -60),
)
self.times["t_setup"] = self.timer.diff()
self.times["t_calc_conns"] = 0
if self.comm != None:
self.comm.Barrier()
self.torus = space.Space(
axes="xy", periodic_boundaries=((0.0, self.params["torus_width"]), (0.0, self.params["torus_height"]))
)
#.........这里部分代码省略.........
示例6: runBrunelNetwork
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
#.........这里部分代码省略.........
'tau_syn_E' : tauSyn,
'tau_syn_I' : tauSyn,
'tau_refrac' : tauRef,
'v_rest' : U0,
'v_reset' : U0,
'v_thresh' : theta,
'cm' : 0.001} # (nF)
# === Build the network ========================================================
# clear all existing network elements and set resolution and limits on delays.
# For NEST, limits must be set BEFORE connecting any elements
#extra = {'threads' : 2}
rank = setup(timestep=dt, max_delay=delay, **extra)
print("rank =", rank)
np = num_processes()
print("np =", np)
import socket
host_name = socket.gethostname()
print("Host #%d is on %s" % (rank+1, host_name))
if 'threads' in extra:
print("%d Initialising the simulator with %d threads..." % (rank, extra['threads']))
else:
print("%d Initialising the simulator with single thread..." % rank)
# Small function to display information only on node 1
def nprint(s):
if rank == 0:
print(s)
timer.start() # start timer on construction
print("%d Setting up random number generator" % rank)
rng = NumpyRNG(kernelseed, parallel_safe=True)
print("%d Creating excitatory population with %d neurons." % (rank, NE))
celltype = IF_curr_alpha(**cell_params)
celltype.default_initial_values['v'] = U0 # Setting default init v, useful for NML2 export
E_net = Population(NE, celltype, label="E_net")
print("%d Creating inhibitory population with %d neurons." % (rank, NI))
I_net = Population(NI, celltype, label="I_net")
print("%d Initialising membrane potential to random values between %g mV and %g mV." % (rank, U0, theta))
uniformDistr = RandomDistribution('uniform', low=U0, high=theta, rng=rng)
E_net.initialize(v=uniformDistr)
I_net.initialize(v=uniformDistr)
print("%d Creating excitatory Poisson generator with rate %g spikes/s." % (rank, p_rate))
source_type = SpikeSourcePoisson(rate=p_rate)
expoisson = Population(NE, source_type, label="expoisson")
print("%d Creating inhibitory Poisson generator with the same rate." % rank)
inpoisson = Population(NI, source_type, label="inpoisson")
# Record spikes
print("%d Setting up recording in excitatory population." % rank)
E_net.record('spikes')
if N_rec_v>0:
E_net[0:min(NE,N_rec_v)].record('v')
print("%d Setting up recording in inhibitory population." % rank)
I_net.record('spikes')
示例7: test
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
def test(cases=[1]):
sp = Space(periodic_boundaries=((0,1), (0,1), None))
safe = False
verbose = True
autapse = False
parallel_safe = True
render = True
for case in cases:
#w = RandomDistribution('uniform', (0,1))
w = "0.2 + d/0.2"
#w = 0.1
#w = lambda dist : 0.1 + numpy.random.rand(len(dist[0]))*sqrt(dist[0]**2 + dist[1]**2)
#delay = RandomDistribution('uniform', (0.1,5.))
delay = "0.1 + d/0.2"
#delay = 0.1
#delay = lambda distances : 0.1 + numpy.random.rand(len(distances))*distances
d_expression = "d < 0.1"
#d_expression = "(d[0] < 0.05) & (d[1] < 0.05)"
#d_expression = "(d[0]/(0.05**2) + d[1]/(0.1**2)) < 100*numpy.random.rand()"
timer = Timer()
np = num_processes()
timer.start()
if case is 1:
conn = DistanceDependentProbabilityConnector(d_expression, delays=delay, weights=w, space=sp, safe=safe, verbose=verbose, allow_self_connections=autapse)
fig_name = "DistanceDependent_%s_np_%d.png" %(simulator_name, np)
elif case is 2:
conn = FixedProbabilityConnector(0.05, weights=w, delays=delay, space=sp, safe=safe, verbose=verbose, allow_self_connections=autapse)
fig_name = "FixedProbability_%s_np_%d.png" %(simulator_name, np)
elif case is 3:
conn = AllToAllConnector(delays=delay, weights=w, space=sp, safe=safe, verbose=verbose, allow_self_connections=autapse)
fig_name = "AllToAll_%s_np_%d.png" %(simulator_name, np)
elif case is 4:
conn = FixedNumberPostConnector(50, weights=w, delays=delay, space=sp, safe=safe, verbose=verbose, allow_self_connections=autapse)
fig_name = "FixedNumberPost_%s_np_%d.png" %(simulator_name, np)
elif case is 5:
conn = FixedNumberPreConnector(50, weights=w, delays=delay, space=sp, safe=safe, verbose=verbose, allow_self_connections=autapse)
fig_name = "FixedNumberPre_%s_np_%d.png" %(simulator_name, np)
elif case is 6:
conn = OneToOneConnector(safe=safe, weights=w, delays=delay, verbose=verbose)
fig_name = "OneToOne_%s_np_%d.png" %(simulator_name, np)
elif case is 7:
conn = FromFileConnector('connections.dat', safe=safe, verbose=verbose)
fig_name = "FromFile_%s_np_%d.png" %(simulator_name, np)
elif case is 8:
conn = SmallWorldConnector(degree=0.1, rewiring=0., weights=w, delays=delay, safe=safe, verbose=verbose, allow_self_connections=autapse, space=sp)
fig_name = "SmallWorld_%s_np_%d.png" %(simulator_name, np)
print "Generating data for %s" %fig_name
rng = NumpyRNG(23434, num_processes=np, parallel_safe=parallel_safe)
prj = Projection(x, x, conn, rng=rng)
simulation_time = timer.elapsedTime()
print "Building time", simulation_time
print "Nb synapses built", len(prj)
if render :
if not(os.path.isdir('Results')):
os.mkdir('Results')
print "Saving Positions...."
x.savePositions('Results/positions.dat')
print "Saving Connections...."
prj.saveConnections('Results/connections.dat', compatible_output=False)
if node_id == 0 and render:
figure()
print "Generating and saving %s" %fig_name
positions = numpy.loadtxt('Results/positions.dat')
connections = numpy.loadtxt('Results/connections.dat')
positions = positions[numpy.argsort(positions[:,0])]
idx_pre = (connections[:,0] - x.first_id).astype(int)
idx_post = (connections[:,1] - x.first_id).astype(int)
d = distances(positions[idx_pre,1:3], positions[idx_post,1:3], 1)
subplot(231)
title('Cells positions')
plot(positions[:,1], positions[:,2], '.')
subplot(232)
title('Weights distribution')
hist(connections[:,2], 50)
subplot(233)
title('Delay distribution')
hist(connections[:,3], 50)
subplot(234)
ids = numpy.random.permutation(numpy.unique(positions[:,0]))[0:6]
colors = ['k', 'r', 'b', 'g', 'c', 'y']
for count, cell in enumerate(ids):
draw_rf(cell, positions, connections, colors[count])
subplot(235)
plot(d, connections[:,2], '.')
subplot(236)
plot(d, connections[:,3], '.')
savefig("Results/" + fig_name)
#.........这里部分代码省略.........
示例8: NetworkModel
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
class NetworkModel(object):
def __init__(self, params, comm):
self.params = params
self.debug_connectivity = True
self.comm = comm
if self.comm != None:
self.pc_id, self.n_proc = self.comm.rank, self.comm.size
print "USE_MPI: yes", '\tpc_id, n_proc:', self.pc_id, self.n_proc
else:
self.pc_id, self.n_proc = 0, 1
print "MPI not used"
np.random.seed(params['np_random_seed'] + self.pc_id)
if self.params['with_short_term_depression']:
self.short_term_depression = SynapseDynamics(fast=TsodyksMarkramMechanism(U=0.95, tau_rec=10.0, tau_facil=0.0))
def import_pynn(self):
"""
This function needs only be called when this class is used in another script as imported module
"""
import pyNN
exec("from pyNN.%s import *" % self.params['simulator'])
print 'import pyNN\npyNN.version: ', pyNN.__version__
def setup(self, load_tuning_prop=False, times={}):
self.projections = {}
self.projections['ee'] = []
self.projections['ei'] = []
self.projections['ie'] = []
self.projections['ii'] = []
if not load_tuning_prop:
self.tuning_prop_exc = utils.set_tuning_prop(self.params, mode='hexgrid', cell_type='exc') # set the tuning properties of exc cells: space (x, y) and velocity (u, v)
self.tuning_prop_inh = utils.set_tuning_prop(self.params, mode='hexgrid', cell_type='inh') # set the tuning properties of exc cells: space (x, y) and velocity (u, v)
else:
self.tuning_prop_exc = np.loadtxt(self.params['tuning_prop_means_fn'])
self.tuning_prop_inh = np.loadtxt(self.params['tuning_prop_inh_fn'])
indices, distances = utils.sort_gids_by_distance_to_stimulus(self.tuning_prop_exc, self.params) # cells in indices should have the highest response to the stimulus
if self.pc_id == 0:
print "Saving tuning_prop to file:", self.params['tuning_prop_means_fn']
np.savetxt(self.params['tuning_prop_means_fn'], self.tuning_prop_exc)
print "Saving tuning_prop to file:", self.params['tuning_prop_inh_fn']
np.savetxt(self.params['tuning_prop_inh_fn'], self.tuning_prop_inh)
print 'Saving gids to record to: ', self.params['gids_to_record_fn']
np.savetxt(self.params['gids_to_record_fn'], indices[:self.params['n_gids_to_record']], fmt='%d')
# np.savetxt(params['gids_to_record_fn'], indices[:params['n_gids_to_record']], fmt='%d')
if self.comm != None:
self.comm.Barrier()
from pyNN.utility import Timer
self.timer = Timer()
self.timer.start()
self.times = times
self.times['t_all'] = 0
# # # # # # # # # # # #
# S E T U P #
# # # # # # # # # # # #
(delay_min, delay_max) = self.params['delay_range']
setup(timestep=0.1, min_delay=delay_min, max_delay=delay_max, rng_seeds_seed=self.params['seed'])
rng_v = NumpyRNG(seed = sim_cnt*3147 + self.params['seed'], parallel_safe=True) #if True, slower but does not depend on number of nodes
self.rng_conn = NumpyRNG(seed = self.params['seed'], parallel_safe=True) #if True, slower but does not depend on number of nodes
# # # # # # # # # # # # # # # # # # # # # # # # #
# R A N D O M D I S T R I B U T I O N S #
# # # # # # # # # # # # # # # # # # # # # # # # #
self.v_init_dist = RandomDistribution('normal',
(self.params['v_init'], self.params['v_init_sigma']),
rng=rng_v,
constrain='redraw',
boundaries=(-80, -60))
self.times['t_setup'] = self.timer.diff()
self.times['t_calc_conns'] = 0
if self.comm != None:
self.comm.Barrier()
self.torus = space.Space(axes='xy', periodic_boundaries=((0., self.params['torus_width']), (0., self.params['torus_height'])))
def create_neurons_with_limited_tuning_properties(self):
n_exc = self.tuning_prop_exc[:, 0].size
n_inh = 0
if self.params['neuron_model'] == 'IF_cond_exp':
self.exc_pop = Population(n_exc, IF_cond_exp, self.params['cell_params_exc'], label='exc_cells')
self.inh_pop = Population(self.params['n_inh'], IF_cond_exp, self.params['cell_params_inh'], label="inh_pop")
elif self.params['neuron_model'] == 'IF_cond_alpha':
self.exc_pop = Population(n_exc, IF_cond_alpha, self.params['cell_params_exc'], label='exc_cells')
self.inh_pop = Population(self.params['n_inh'], IF_cond_alpha, self.params['cell_params_inh'], label="inh_pop")
elif self.params['neuron_model'] == 'EIF_cond_exp_isfa_ista':
self.exc_pop = Population(n_exc, EIF_cond_exp_isfa_ista, self.params['cell_params_exc'], label='exc_cells')
self.inh_pop = Population(self.params['n_inh'], EIF_cond_exp_isfa_ista, self.params['cell_params_inh'], label="inh_pop")
else:
print '\n\nUnknown neuron model:\n\t', self.params['neuron_model']
#.........这里部分代码省略.........
示例9: run
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
def run(self,params, verbose =True):
tmpdir = tempfile.mkdtemp()
timer = Timer()
timer.start() # start timer on construction
# === Build the network ========================================================
if verbose: print "Setting up simulation"
sim.setup(timestep=params.simulation.dt,max_delay=params.simulation.syn_delay, debug=False)
N = params.N
#dc_generator
current_source = sim.DCSource( amplitude= params.snr,
start=params.simulation.simtime/4,
stop=params.simulation.simtime/4*3)
# internal noise model (NEST specific)
noise = sim.Population(N,'noise_generator',{'mean':0.,'std':params.noise_std})
# target population
output = sim.Population(N , sim.IF_cond_exp)
# initialize membrane potential
numpy.random.seed(params.simulation.kernelseed)
V_rest, V_spike = -70., -53.
output.tset('v_init',V_rest + numpy.random.rand(N,)* (V_spike -V_rest))
# Connecting the network
conn = sim.OneToOneConnector(weights = params.weight)
sim.Projection(noise, output, conn)
for cell in output:
cell.inject(current_source)
output.record()
# reads out time used for building
buildCPUTime= timer.elapsedTime()
# === Run simulation ===========================================================
if verbose: print "Running simulation"
timer.reset() # start timer on construction
sim.run(params.simulation.simtime)
simCPUTime = timer.elapsedTime()
timer.reset() # start timer on construction
output_filename = os.path.join(tmpdir,'output.gdf')
#print output_filename
output.printSpikes(output_filename)#
output_DATA = load_spikelist(output_filename,N,
t_start=0.0, t_stop=params.simulation.simtime)
writeCPUTime = timer.elapsedTime()
if verbose:
print "\nFiber Network Simulation:"
print "Number of Neurons : ", N
print "Mean Output rate : ", output_DATA.mean_rate(), "Hz during ",params.simulation.simtime, "ms"
print("Build time : %g s" % buildCPUTime)
print("Simulation time : %g s" % simCPUTime)
print("Writing time : %g s" % writeCPUTime)
os.remove(output_filename)
os.rmdir(tmpdir)
return output_DATA
示例10: run_model
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
def run_model(sim, **options):
"""
Run a simulation using the parameters read from the file "spike_train_statistics.json"
:param sim: the PyNN backend module to be used.
:param options: should contain a keyword "simulator" which is the name of the PyNN backend module used.
:return: a tuple (`data`, `times`) where `data` is a Neo Block containing the recorded spikes
and `times` is a dict containing the time taken for different phases of the simulation.
"""
import json
from pyNN.utility import Timer
print("Running")
timer = Timer()
g = open("spike_train_statistics.json", 'r')
d = json.load(g)
N = d['param']['N']
max_rate = d['param']['max_rate']
tstop = d['param']['tstop']
d['SpikeSourcePoisson'] = {
"duration": tstop
}
if options['simulator'] == "hardware.brainscales":
hardware_preset = d['setup'].pop('hardware_preset', None)
if hardware_preset:
d['setup']['hardware'] = sim.hardwareSetup[hardware_preset]
d['SpikeSourcePoisson']['random'] = True
place = mapper.place()
timer.start()
sim.setup(**d['setup'])
spike_sources = sim.Population(N, sim.SpikeSourcePoisson, d['SpikeSourcePoisson'])
delta_rate = max_rate/N
rates = numpy.linspace(delta_rate, max_rate, N)
print("Firing rates: %s" % rates)
if PYNN07:
spike_sources.tset("rate", rates)
else:
spike_sources.set(rate=rates)
if options['simulator'] == "hardware.brainscales":
for i, spike_source in enumerate(spike_sources):
place.to(spike_source, hicann=i//8, neuron=i%64)
place.commit()
if PYNN07:
spike_sources.record()
else:
spike_sources.record('spikes')
setup_time = timer.diff()
sim.run(tstop)
run_time = timer.diff()
if PYNN07:
spike_array = spike_sources.getSpikes()
data = spike_array_to_neo(spike_array, spike_sources, tstop)
else:
data = spike_sources.get_data()
sim.end()
closing_time = timer.diff()
times = {'setup_time': setup_time, 'run_time': run_time, 'closing_time': closing_time}
return data, times
示例11: NetworkModel
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
class NetworkModel(object):
def __init__(self, params, comm):
self.params = params
self.debug_connectivity = True
self.comm = comm
if self.comm != None:
self.pc_id, self.n_proc = self.comm.rank, self.comm.size
print "USE_MPI: yes", '\tpc_id, n_proc:', self.pc_id, self.n_proc
else:
self.pc_id, self.n_proc = 0, 1
print "MPI not used"
def import_pynn(self):
"""
This function needs only be called when this class is used in another script as imported module
"""
import pyNN
exec("from pyNN.%s import *" % self.params['simulator'])
print 'import pyNN\npyNN.version: ', pyNN.__version__
def setup(self, load_tuning_prop=False):
if load_tuning_prop:
print 'Loading tuning properties from', self.params['tuning_prop_means_fn']
self.tuning_prop_exc = np.loadtxt(self.params['tuning_prop_means_fn'])
else:
print 'Preparing tuning properties with limited range....'
x_range = (0, 1.)
y_range = (0.2, .5)
u_range = (.05, 1.0)
v_range = (-.2, .2)
tp_exc_good, tp_exc_out_of_range = utils.set_limited_tuning_properties(params, y_range, x_range, u_range, v_range, cell_type='exc')
self.tuning_prop_exc = tp_exc_good
print 'n_exc within range: ', tp_exc_good[:, 0].size
print "Saving tuning_prop to file:", params['tuning_prop_means_fn']
np.savetxt(params['tuning_prop_means_fn'], tp_exc_good)
indices, distances = utils.sort_gids_by_distance_to_stimulus(self.tuning_prop_exc, self.params['motion_params'], self.params) # cells in indices should have the highest response to the stimulus
if self.pc_id == 0:
print "Saving tuning_prop to file:", self.params['tuning_prop_means_fn']
np.savetxt(self.params['tuning_prop_means_fn'], self.tuning_prop_exc)
print 'Saving gids to record to: ', self.params['gids_to_record_fn']
np.savetxt(self.params['gids_to_record_fn'], indices[:self.params['n_gids_to_record']], fmt='%d')
# np.savetxt(params['gids_to_record_fn'], indices[:params['n_gids_to_record']], fmt='%d')
if self.comm != None:
self.comm.Barrier()
from pyNN.utility import Timer
self.timer = Timer()
self.timer.start()
self.times = {}
# # # # # # # # # # # #
# S E T U P #
# # # # # # # # # # # #
(delay_min, delay_max) = self.params['delay_range']
setup(timestep=0.1, min_delay=delay_min, max_delay=delay_max, rng_seeds_seed=self.params['seed'])
rng_v = NumpyRNG(seed = sim_cnt*3147 + self.params['seed'], parallel_safe=True) #if True, slower but does not depend on number of nodes
self.rng_conn = NumpyRNG(seed = self.params['seed'], parallel_safe=True) #if True, slower but does not depend on number of nodes
# # # # # # # # # # # # # # # # # # # # # # # # #
# R A N D O M D I S T R I B U T I O N S #
# # # # # # # # # # # # # # # # # # # # # # # # #
self.v_init_dist = RandomDistribution('normal',
(self.params['v_init'], self.params['v_init_sigma']),
rng=rng_v,
constrain='redraw',
boundaries=(-80, -60))
self.times['t_setup'] = self.timer.diff()
self.times['t_calc_conns'] = 0
if self.comm != None:
self.comm.Barrier()
def create_neurons_with_limited_tuning_properties(self, input_created):
n_exc = self.tuning_prop_exc[:, 0].size
n_inh = 0
if self.params['neuron_model'] == 'IF_cond_exp':
self.exc_pop = Population(n_exc, IF_cond_exp, self.params['cell_params_exc'], label='exc_cells')
elif self.params['neuron_model'] == 'EIF_cond_exp_isfa_ista':
self.exc_pop = Population(n_exc, EIF_cond_exp_isfa_ista, self.params['cell_params_exc'], label='exc_cells')
else:
print '\n\nUnknown neuron model:\n\t', self.params['neuron_model']
self.local_idx_exc = get_local_indices(self.exc_pop, offset=0)
self.exc_pop.initialize('v', self.v_init_dist)
if not input_created:
self.spike_times_container = [ [] for i in xrange(len(self.local_idx_exc))]
# self.local_idx_inh = get_local_indices(self.inh_pop, offset=self.params['n_exc'])
# print 'Debug, pc_id %d has local %d inh indices:' % (self.pc_id, len(self.local_idx_inh)), self.local_idx_inh
# self.inh_pop.initialize('v', self.v_init_dist)
self.times['t_create'] = self.timer.diff()
#.........这里部分代码省略.........
示例12: run
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
def run(self, params, verbose=True):
"""
params are the parameters to use
"""
tmpdir = tempfile.mkdtemp()
myTimer = Timer()
# === Build the network ========================================================
if verbose:
print "Setting up simulation"
myTimer.start() # start timer on construction
sim.setup(timestep=params["dt"], max_delay=params["syn_delay"])
N = params["N"]
# dc_generator
phr_ON = sim.Population((N,), "dc_generator")
phr_OFF = sim.Population((N,), "dc_generator")
for factor, phr in [(-params["snr"], phr_OFF), (params["snr"], phr_ON)]:
phr.tset("amplitude", params["amplitude"] * factor)
phr.set({"start": params["simtime"] / 4, "stop": params["simtime"] / 4 * 3})
# internal noise model (see benchmark_noise)
noise_ON = sim.Population((N,), "noise_generator", {"mean": 0.0, "std": params["noise_std"]})
noise_OFF = sim.Population((N,), "noise_generator", {"mean": 0.0, "std": params["noise_std"]})
# target ON and OFF populations (what about a tridimensional Population?)
out_ON = sim.Population(
(N,), sim.IF_curr_alpha
) #'IF_cond_alpha) #iaf_sfa_neuron')# EIF_cond_alpha_isfa_ista, IF_cond_exp_gsfa_grr,sim.IF_cond_alpha)#'iaf_sfa_neuron',params['parameters_gc'])#'iaf_cond_neuron')# IF_cond_alpha) #
out_OFF = sim.Population(
(N,), sim.IF_curr_alpha
) #'IF_cond_alpha) #IF_curr_alpha)#'iaf_sfa_neuron')#sim.IF_curr_alpha)#,params['parameters_gc'])
# initialize membrane potential TODO: and conductances?
from pyNN.random import RandomDistribution, NumpyRNG
rng = NumpyRNG(seed=params["kernelseed"])
vinit_distr = RandomDistribution(distribution="uniform", parameters=[-70, -55], rng=rng)
for out_ in [out_ON, out_OFF]:
out_.randomInit(vinit_distr)
retina_proj_ON = sim.Projection(phr_ON, out_ON, sim.OneToOneConnector())
retina_proj_ON.setWeights(params["weight"])
# TODO fix setWeight, add setDelays to 10 ms (relative to stimulus onset)
retina_proj_OFF = sim.Projection(phr_OFF, out_OFF, sim.OneToOneConnector())
retina_proj_OFF.setWeights(params["weight"])
noise_proj_ON = sim.Projection(noise_ON, out_ON, sim.OneToOneConnector())
noise_proj_ON.setWeights(params["weight"])
noise_proj_OFF = sim.Projection(
noise_OFF, out_OFF, sim.OneToOneConnector()
) # implication if ON and OFF have the same noise input?
noise_proj_OFF.setWeights(params["weight"])
out_ON.record()
out_OFF.record()
# reads out time used for building
buildCPUTime = myTimer.elapsedTime()
# === Run simulation ===========================================================
if verbose:
print "Running simulation"
myTimer.reset() # start timer on construction
sim.run(params["simtime"])
simCPUTime = myTimer.elapsedTime()
myTimer.reset() # start timer on construction
# TODO LUP use something like "for pop in [phr, out]" ?
out_ON_filename = os.path.join(tmpdir, "out_on.gdf")
out_OFF_filename = os.path.join(tmpdir, "out_off.gdf")
out_ON.printSpikes(out_ON_filename) #
out_OFF.printSpikes(out_OFF_filename) #
# TODO LUP get out_ON_DATA on a 2D grid independantly of out_ON.cell.astype(int)
out_ON_DATA = load_spikelist(out_ON_filename, range(N), t_start=0.0, t_stop=params["simtime"])
out_OFF_DATA = load_spikelist(out_OFF_filename, range(N), t_start=0.0, t_stop=params["simtime"])
out = {"out_ON_DATA": out_ON_DATA, "out_OFF_DATA": out_OFF_DATA} # ,'out_ON_pos':out_ON}
# cleans up
os.remove(out_ON_filename)
os.remove(out_OFF_filename)
os.rmdir(tmpdir)
writeCPUTime = myTimer.elapsedTime()
if verbose:
print "\nRetina Network Simulation:"
print (params["description"])
print "Number of Neurons : ", N
print "Output rate (ON) : ", out_ON_DATA.mean_rate(), "Hz/neuron in ", params["simtime"], "ms"
print "Output rate (OFF) : ", out_OFF_DATA.mean_rate(), "Hz/neuron in ", params["simtime"], "ms"
print ("Build time : %g s" % buildCPUTime)
print ("Simulation time : %g s" % simCPUTime)
print ("Writing time : %g s" % writeCPUTime)
return out
示例13: test_va_benchmark
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import start [as 别名]
def test_va_benchmark(self):
simulator_name = 'spiNNaker'
timer = Timer()
# === Define parameters ========================================================
rngseed = 98766987
parallel_safe = True
n = 1500 # number of cells
r_ei = 4.0 # number of excitatory cells:number of inhibitory cells
pconn = 0.02 # connection probability
dt = 0.1 # (ms) simulation timestep
tstop = 200 # (ms) simulaton duration
delay = 1
# Cell parameters
area = 20000. # (µm²)
tau_m = 20. # (ms)
cm = 1. # (µF/cm²)
g_leak = 5e-5 # (S/cm²)
e_leak = -49. # (mV)
v_thresh = -50. # (mV)
v_reset = -60. # (mV)
t_refrac = 5. # (ms) (clamped at v_reset)
v_mean = -60. # (mV) 'mean' membrane potential, for calculating CUBA weights
tau_exc = 5. # (ms)
tau_inh = 10. # (ms)
g_exc = 0.27 # (nS) #Those weights should be similar to the COBA weights
g_inh = 4.5 # (nS) # but the delpolarising drift should be taken into account
e_rev_exc = 0. # (mV)
e_rev_inh = -80. # (mV)
# === Calculate derived parameters =============================================
area *= 1e-8 # convert to cm²
cm *= area * 1000 # convert to nF
r_m = 1e-6 / (g_leak * area) # membrane resistance in MΩ
assert tau_m == cm * r_m # just to check
n_exc = int(round((n * r_ei / (1 + r_ei)))) # number of excitatory cells
n_inh = n - n_exc # number of inhibitory cells
print n_exc, n_inh
celltype = IF_curr_exp
w_exc = 1e-3 * g_exc * (e_rev_exc - v_mean) # (nA) weight of excitatory synapses
w_inh = 1e-3 * g_inh * (e_rev_inh - v_mean) # (nA)
assert w_exc > 0
assert w_inh < 0
# === Build the network ========================================================
setup(timestep=dt, min_delay=delay, max_delay=delay)
if simulator_name == 'spiNNaker':
set_number_of_neurons_per_core('IF_curr_exp', 100) # this will set 100 neurons per core
set_number_of_neurons_per_core('IF_cond_exp', 50) # this will set 50 neurons per core
node_id = 1
np = 1
host_name = socket.gethostname()
print "Host #%d is on %s" % (np, host_name)
cell_params = {
'tau_m': tau_m, 'tau_syn_E': tau_exc, 'tau_syn_I': tau_inh,
'v_rest': e_leak, 'v_reset': v_reset, 'v_thresh': v_thresh,
'cm': cm, 'tau_refrac': t_refrac, 'i_offset': 0}
print cell_params
timer.start()
print "%s Creating cell populations..." % node_id
exc_cells = Population(n_exc, celltype, cell_params,
label="Excitatory_Cells")
inh_cells = Population(n_inh, celltype, cell_params,
label="Inhibitory_Cells")
NativeRNG(12345)
print "%s Initialising membrane potential to random values..." % node_id
rng = NumpyRNG(seed=rngseed, parallel_safe=parallel_safe)
uniform_distr = RandomDistribution('uniform', [v_reset, v_thresh],
rng=rng)
exc_cells.initialize('v', uniform_distr)
inh_cells.initialize('v', uniform_distr)
print "%s Connecting populations..." % node_id
exc_conn = FixedProbabilityConnector(pconn, weights=w_exc, delays=delay)
inh_conn = FixedProbabilityConnector(pconn, weights=w_inh, delays=delay)
connections = dict()
connections['e2e'] = Projection(exc_cells, exc_cells, exc_conn,
target='excitatory', rng=rng)
connections['e2i'] = Projection(exc_cells, inh_cells, exc_conn,
#.........这里部分代码省略.........