本文整理汇总了Python中pyNN.utility.Timer.diff方法的典型用法代码示例。如果您正苦于以下问题:Python Timer.diff方法的具体用法?Python Timer.diff怎么用?Python Timer.diff使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyNN.utility.Timer
的用法示例。
在下文中一共展示了Timer.diff方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: FixedProbabilityConnector
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import diff [as 别名]
connector = FixedProbabilityConnector(pconn, rng=rng, callback=progress_bar)
exc_syn = StaticSynapse(weight=w_exc, delay=delay)
inh_syn = StaticSynapse(weight=w_inh, delay=delay)
connections={}
connections['exc'] = Projection(exc_cells, all_cells, connector, exc_syn, receptor_type='excitatory')
connections['inh'] = Projection(inh_cells, all_cells, connector, inh_syn, receptor_type='inhibitory')
if (benchmark == "COBA"):
connections['ext'] = Projection(ext_stim, all_cells, ext_conn, ext_syn, receptor_type='excitatory')
# === Setup recording ==========================================================
print "%s Setting up recording..." % node_id
all_cells.record('spikes')
exc_cells[[0, 1]].record('v')
buildCPUTime = timer.diff()
# === Save connections to file =================================================
#print "%s Saving connections to file..." % node_id
#for prj in connections.keys():
# connections[prj].saveConnections('Results/VAbenchmark_%s_%s_%s_np%d.conn' % (benchmark, prj, simulator_name, np))
#saveCPUTime = timer.diff()
# === Run simulation ===========================================================
print "%d Running simulation..." % node_id
run(tstop)
simCPUTime = timer.diff()
示例2: abs
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import diff [as 别名]
dy = abs(pos_1[:, 1] - pos_2[:, 1])
dx = numpy.minimum(dx, N - dx)
dy = numpy.minimum(dy, N - dy)
return sqrt(dx * dx + dy * dy)
timer.start()
node_id = setup(timestep=0.1, min_delay=0.1, max_delay=4.0)
print "Creating cells population..."
N = 30
structure = RandomStructure(Cuboid(1, 1, 1), origin=(0.5, 0.5, 0.5), rng=NumpyRNG(2652))
# structure = Grid2D(dx=1/float(N), dy=1/float(N))
x = Population(N ** 2, IF_curr_exp(), structure=structure)
mytime = timer.diff()
print "Time to build the cell population:", mytime, "s"
def test(cases=[1]):
sp = Space(periodic_boundaries=((0, 1), (0, 1), None), axes="xy")
safe = False
callback = progress_bar.set_level
autapse = False
parallel_safe = True
render = True
to_file = True
for case in cases:
# w = RandomDistribution('uniform', (0,1))
示例3: test
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import diff [as 别名]
def test(cases=[1]):
sp = Space(periodic_boundaries=((0, 1), (0, 1), None), axes="xy")
safe = False
callback = progress_bar.set_level
autapse = False
parallel_safe = True
render = True
to_file = True
for case in cases:
# w = RandomDistribution('uniform', (0,1))
w = "0.2 + d/0.2"
# w = 0.1
# w = lambda dist : 0.1 + numpy.random.rand(len(dist[0]))*sqrt(dist[0]**2 + dist[1]**2)
# delay = RandomDistribution('uniform', (0.1,5.))
# delay = "0.1 + d/0.2"
delay = 0.1
# delay = lambda distances : 0.1 + numpy.random.rand(len(distances))*distances
d_expression = "exp(-d**2/(2*0.1**2))"
# d_expression = "(d[0] < 0.05) & (d[1] < 0.05)"
# d_expression = "(d[0]/(0.05**2) + d[1]/(0.1**2)) < 100*numpy.random.rand()"
timer = Timer()
np = num_processes()
timer.start()
synapse = StaticSynapse(weight=w, delay=delay)
rng = NumpyRNG(23434, parallel_safe=parallel_safe)
if case is 1:
conn = DistanceDependentProbabilityConnector(
d_expression, safe=safe, callback=callback, allow_self_connections=autapse, rng=rng
)
fig_name = "DistanceDependent_%s_np_%d.png" % (simulator_name, np)
elif case is 2:
conn = FixedProbabilityConnector(
0.02, safe=safe, callback=callback, allow_self_connections=autapse, rng=rng
)
fig_name = "FixedProbability_%s_np_%d.png" % (simulator_name, np)
elif case is 3:
conn = AllToAllConnector(delays=delay, safe=safe, callback=callback, allow_self_connections=autapse)
fig_name = "AllToAll_%s_np_%d.png" % (simulator_name, np)
elif case is 4:
conn = FixedNumberPostConnector(50, safe=safe, callback=callback, allow_self_connections=autapse, rng=rng)
fig_name = "FixedNumberPost_%s_np_%d.png" % (simulator_name, np)
elif case is 5:
conn = FixedNumberPreConnector(50, safe=safe, callback=callback, allow_self_connections=autapse, rng=rng)
fig_name = "FixedNumberPre_%s_np_%d.png" % (simulator_name, np)
elif case is 6:
conn = OneToOneConnector(safe=safe, callback=callback)
fig_name = "OneToOne_%s_np_%d.png" % (simulator_name, np)
elif case is 7:
conn = FromFileConnector(
files.NumpyBinaryFile("Results/connections.dat", mode="r"),
safe=safe,
callback=callback,
distributed=True,
)
fig_name = "FromFile_%s_np_%d.png" % (simulator_name, np)
elif case is 8:
conn = SmallWorldConnector(
degree=0.1, rewiring=0.0, safe=safe, callback=callback, allow_self_connections=autapse
)
fig_name = "SmallWorld_%s_np_%d.png" % (simulator_name, np)
print "Generating data for %s" % fig_name
prj = Projection(x, x, conn, synapse, space=sp)
mytime = timer.diff()
print "Time to connect the cell population:", mytime, "s"
print "Nb synapses built", prj.size()
if to_file:
if not (os.path.isdir("Results")):
os.mkdir("Results")
print "Saving Connections...."
prj.save("all", files.NumpyBinaryFile("Results/connections.dat", mode="w"), gather=True)
mytime = timer.diff()
print "Time to save the projection:", mytime, "s"
if render and to_file:
print "Saving Positions...."
x.save_positions("Results/positions.dat")
end()
if node_id == 0 and render and to_file:
figure()
print "Generating and saving %s" % fig_name
positions = numpy.loadtxt("Results/positions.dat")
positions[:, 0] -= positions[:, 0].min()
connections = files.NumpyBinaryFile("Results/connections.dat", mode="r").read()
print positions.shape, connections.shape
connections[:, 0] -= connections[:, 0].min()
connections[:, 1] -= connections[:, 1].min()
#.........这里部分代码省略.........
示例4: enumerate
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import diff [as 别名]
# Save weights for all connections
for i, (ampa_weight_writer, nmda_weight_writer) in enumerate(connection_results):
# Write AMPA weights
ampa_weight_writer("%s/connection_%u_e_e_ampa.npy" % (folder, i))
# Write NMDA weights to correct folder
if mode == Mode.train_asymmetrical:
nmda_weight_writer("%s/connection_%u_e_e_nmda_asymmetrical.npy" % (folder, i))
else:
nmda_weight_writer("%s/connection_%u_e_e_nmda_symmetrical.npy" % (folder, i))
# Loop through the HCU results and save data to pickle format
for i, (hcu_e_data_writer,) in enumerate(hcu_results):
hcu_e_data_writer("%s/hcu_%u_e_data.pkl" % (folder, i))
logger.info("Download time %gs", timer.diff())
# Once data is read, end simulation
end_simulation()
else:
# Testing parameters
testing_simtime = 6000.0 # simulation time [ms]
ampa_nmda_ratio = 4.795918367
tau_ca2 = 300.0
if mode == Mode.test_symmetrical:
i_alpha = 0.7
gain_per_hcu = 1.3
else:
i_alpha = 0.15
示例5: NetworkModel
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import diff [as 别名]
class NetworkModel(object):
def __init__(self, params, comm):
self.params = params
self.debug_connectivity = True
self.comm = comm
if self.comm != None:
self.pc_id, self.n_proc = self.comm.rank, self.comm.size
print "USE_MPI: yes", "\tpc_id, n_proc:", self.pc_id, self.n_proc
else:
self.pc_id, self.n_proc = 0, 1
print "MPI not used"
np.random.seed(params["np_random_seed"] + self.pc_id)
if self.params["with_short_term_depression"]:
self.short_term_depression = SynapseDynamics(
fast=TsodyksMarkramMechanism(U=0.95, tau_rec=10.0, tau_facil=0.0)
)
def import_pynn(self):
"""
This function needs only be called when this class is used in another script as imported module
"""
import pyNN
exec ("from pyNN.%s import *" % self.params["simulator"])
print "import pyNN\npyNN.version: ", pyNN.__version__
def setup(self, load_tuning_prop=False, times={}):
self.projections = {}
self.projections["ee"] = []
self.projections["ei"] = []
self.projections["ie"] = []
self.projections["ii"] = []
if not load_tuning_prop:
self.tuning_prop_exc = utils.set_tuning_prop(
self.params, mode="hexgrid", cell_type="exc"
) # set the tuning properties of exc cells: space (x, y) and velocity (u, v)
self.tuning_prop_inh = utils.set_tuning_prop(
self.params, mode="hexgrid", cell_type="inh"
) # set the tuning properties of exc cells: space (x, y) and velocity (u, v)
else:
self.tuning_prop_exc = np.loadtxt(self.params["tuning_prop_means_fn"])
self.tuning_prop_inh = np.loadtxt(self.params["tuning_prop_inh_fn"])
indices, distances = utils.sort_gids_by_distance_to_stimulus(
self.tuning_prop_exc, self.params["motion_params"], self.params
) # cells in indices should have the highest response to the stimulus
if self.pc_id == 0:
print "Saving tuning_prop to file:", self.params["tuning_prop_means_fn"]
np.savetxt(self.params["tuning_prop_means_fn"], self.tuning_prop_exc)
print "Saving tuning_prop to file:", self.params["tuning_prop_inh_fn"]
np.savetxt(self.params["tuning_prop_inh_fn"], self.tuning_prop_inh)
print "Saving gids to record to: ", self.params["gids_to_record_fn"]
np.savetxt(self.params["gids_to_record_fn"], indices[: self.params["n_gids_to_record"]], fmt="%d")
# np.savetxt(params['gids_to_record_fn'], indices[:params['n_gids_to_record']], fmt='%d')
if self.comm != None:
self.comm.Barrier()
from pyNN.utility import Timer
self.timer = Timer()
self.timer.start()
self.times = times
self.times["t_all"] = 0
# # # # # # # # # # # #
# S E T U P #
# # # # # # # # # # # #
(delay_min, delay_max) = self.params["delay_range"]
setup(timestep=0.1, min_delay=delay_min, max_delay=delay_max, rng_seeds_seed=self.params["seed"])
rng_v = NumpyRNG(
seed=sim_cnt * 3147 + self.params["seed"], parallel_safe=True
) # if True, slower but does not depend on number of nodes
self.rng_conn = NumpyRNG(
seed=self.params["seed"], parallel_safe=True
) # if True, slower but does not depend on number of nodes
# # # # # # # # # # # # # # # # # # # # # # # # #
# R A N D O M D I S T R I B U T I O N S #
# # # # # # # # # # # # # # # # # # # # # # # # #
self.v_init_dist = RandomDistribution(
"normal",
(self.params["v_init"], self.params["v_init_sigma"]),
rng=rng_v,
constrain="redraw",
boundaries=(-80, -60),
)
self.times["t_setup"] = self.timer.diff()
self.times["t_calc_conns"] = 0
if self.comm != None:
self.comm.Barrier()
self.torus = space.Space(
axes="xy", periodic_boundaries=((0.0, self.params["torus_width"]), (0.0, self.params["torus_height"]))
)
#.........这里部分代码省略.........
示例6: Abbott
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import diff [as 别名]
## Start
## The asynchronous irregular network dynamics of the model published in
## Vogels and Abbott (2005) without inhibitory plasticity.
## Original simulation time: 1 min (60000 ms)
excPopulation.record('spikes')
pattern1.record('spikes')
pattern1_stim.record('spikes')
pattern2.record('spikes')
pattern2_stim.record('spikes')
patternIntersection.record('spikes')
controlPopulation.record('spikes')
inhibPopulation.record('spikes')
buildCPUTime = timer.diff()
print("\n\nTime to build the network: %s seconds" % buildCPUTime)
print("\n--- Pre-simulation ---")
print("\nPre-simulation time: %s milliseconds" % timePreSim)
run(timePreSim)
simCPUTime_pre = timer.diff()
print("\nTime to perform the pre-simulation: %d seconds (%0.2f minutes)" % (simCPUTime_pre, simCPUTime_pre / 60))
excSpikes = excPopulation.get_data('spikes', clear="true")
pattern1Spikes = pattern1.get_data('spikes')
pattern1_stimSpikes = pattern1_stim.get_data('spikes', clear="true")
示例7: Abbott
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import diff [as 别名]
## The asynchronous irregular network dynamics of the model published in
## Vogels and Abbott (2005) without inhibitory plasticity.
## Original simulation time: 1 min (60000 ms)
excPopulation.record('spikes')
pattern1.record('spikes')
pattern1_stim.record('spikes')
pattern2.record('spikes')
pattern2_stim.record('spikes')
patternIntersection.record('spikes')
controlPopulation.record('spikes')
inhibPopulation.record('spikes')
buildCPUTime = timer.diff()
print("\n\nTime to build the network: %s seconds" %buildCPUTime)
print("\n--- Pre-simulation ---")
print("\nPre-simulation time: %s milliseconds" %timePreSim)
run(timePreSim)
simCPUTime_pre = timer.diff()
print("\nTime to perform the pre-simulation: %d seconds (%0.2f minutes)" %(simCPUTime_pre, simCPUTime_pre/60))
excSpikes = excPopulation.get_data( 'spikes', clear="true")
示例8: enumerate
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import diff [as 别名]
time = np.arange(0, params['t_stimulus'], params['dt_rate'])
#print 'Prepare spike trains'
#L_input = np.zeros((params['n_exc'], time.shape[0]))
#for i_time, time_ in enumerate(time):
# if (i_time % 100 == 0):
# print "t:", time_
# L_input[:, i_time] = utils.get_input(tuning_prop, params, time_/params['t_sim'])
# L_input[:, i_time] *= params['f_max_stim']
# ===============
# S E T U P
# ===============
(delay_min, delay_max) = params['delay_range']
setup(timestep=0.1, min_delay=delay_min, max_delay=delay_max, rng_seeds_seed=sim_cnt)
times['t_setup'] = timer.diff()
exc_pop = Population(params['n_exc'], IF_cond_exp, params['cell_params_exc'], label='exc_cells')
times['t_create'] = timer.diff()
rng_v = NumpyRNG(seed = sim_cnt*3147 + params['seed'])
v_init_dist = RandomDistribution('normal',
(params['v_init'], params['v_init_sigma']),
rng=rng_v,
constrain='redraw',
boundaries=(-80, -60))
exc_pop.initialize('v', v_init_dist)
# ==================================
# C O N N E C T I N P U T
# ==================================
for tgt in xrange(params['n_exc']):
示例9: int
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import diff [as 别名]
simulator_name = 'nest'
from pyNN.nest import *
#exec("from pyNN.%s import *" % simulator_name)
try:
from mpi4py import MPI
USE_MPI = True
comm = MPI.COMM_WORLD
node_id, n_proc = comm.rank, comm.size
print "USE_MPI:", USE_MPI, 'pc_id, n_proc:', node_id, n_proc
except:
USE_MPI = False
node_id, n_proc, comm = 0, 1, None
print "MPI not used"
from pyNN.random import NumpyRNG, RandomDistribution
times['t_import'] = timer.diff()
# === DEFINE PARAMETERS
benchmark = "COBA"
rngseed = 98765
parallel_safe = True
np = num_processes()
folder_name = 'Results_PyNN_FixedNumberPost_np%d/' % (np)
gather = False # gather spikes and membrane potentials on one process
times_fn = 'pynn_times_FixedNumberPost_gather%d_np%d.dat' % (gather, np)
n_cells = 200 * np
r_ei = 4.0 # number of excitatory cells:number of inhibitory cells
n_exc = int(round((n_cells*r_ei/(1+r_ei)))) # number of excitatory cells
n_inh = n_cells - n_exc # number of inhibitory cells
n_cells_to_record = np
示例10: NetworkModel
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import diff [as 别名]
class NetworkModel(object):
def __init__(self, params, comm):
self.params = params
self.debug_connectivity = True
self.comm = comm
if self.comm != None:
self.pc_id, self.n_proc = self.comm.rank, self.comm.size
print "USE_MPI: yes", '\tpc_id, n_proc:', self.pc_id, self.n_proc
else:
self.pc_id, self.n_proc = 0, 1
print "MPI not used"
np.random.seed(params['np_random_seed'] + self.pc_id)
if self.params['with_short_term_depression']:
self.short_term_depression = SynapseDynamics(fast=TsodyksMarkramMechanism(U=0.95, tau_rec=10.0, tau_facil=0.0))
def import_pynn(self):
"""
This function needs only be called when this class is used in another script as imported module
"""
import pyNN
exec("from pyNN.%s import *" % self.params['simulator'])
print 'import pyNN\npyNN.version: ', pyNN.__version__
def setup(self, load_tuning_prop=False, times={}):
self.projections = {}
self.projections['ee'] = []
self.projections['ei'] = []
self.projections['ie'] = []
self.projections['ii'] = []
if not load_tuning_prop:
self.tuning_prop_exc = utils.set_tuning_prop(self.params, mode='hexgrid', cell_type='exc') # set the tuning properties of exc cells: space (x, y) and velocity (u, v)
self.tuning_prop_inh = utils.set_tuning_prop(self.params, mode='hexgrid', cell_type='inh') # set the tuning properties of exc cells: space (x, y) and velocity (u, v)
else:
self.tuning_prop_exc = np.loadtxt(self.params['tuning_prop_means_fn'])
self.tuning_prop_inh = np.loadtxt(self.params['tuning_prop_inh_fn'])
indices, distances = utils.sort_gids_by_distance_to_stimulus(self.tuning_prop_exc, self.params) # cells in indices should have the highest response to the stimulus
if self.pc_id == 0:
print "Saving tuning_prop to file:", self.params['tuning_prop_means_fn']
np.savetxt(self.params['tuning_prop_means_fn'], self.tuning_prop_exc)
print "Saving tuning_prop to file:", self.params['tuning_prop_inh_fn']
np.savetxt(self.params['tuning_prop_inh_fn'], self.tuning_prop_inh)
print 'Saving gids to record to: ', self.params['gids_to_record_fn']
np.savetxt(self.params['gids_to_record_fn'], indices[:self.params['n_gids_to_record']], fmt='%d')
# np.savetxt(params['gids_to_record_fn'], indices[:params['n_gids_to_record']], fmt='%d')
if self.comm != None:
self.comm.Barrier()
from pyNN.utility import Timer
self.timer = Timer()
self.timer.start()
self.times = times
self.times['t_all'] = 0
# # # # # # # # # # # #
# S E T U P #
# # # # # # # # # # # #
(delay_min, delay_max) = self.params['delay_range']
setup(timestep=0.1, min_delay=delay_min, max_delay=delay_max, rng_seeds_seed=self.params['seed'])
rng_v = NumpyRNG(seed = sim_cnt*3147 + self.params['seed'], parallel_safe=True) #if True, slower but does not depend on number of nodes
self.rng_conn = NumpyRNG(seed = self.params['seed'], parallel_safe=True) #if True, slower but does not depend on number of nodes
# # # # # # # # # # # # # # # # # # # # # # # # #
# R A N D O M D I S T R I B U T I O N S #
# # # # # # # # # # # # # # # # # # # # # # # # #
self.v_init_dist = RandomDistribution('normal',
(self.params['v_init'], self.params['v_init_sigma']),
rng=rng_v,
constrain='redraw',
boundaries=(-80, -60))
self.times['t_setup'] = self.timer.diff()
self.times['t_calc_conns'] = 0
if self.comm != None:
self.comm.Barrier()
self.torus = space.Space(axes='xy', periodic_boundaries=((0., self.params['torus_width']), (0., self.params['torus_height'])))
def create_neurons_with_limited_tuning_properties(self):
n_exc = self.tuning_prop_exc[:, 0].size
n_inh = 0
if self.params['neuron_model'] == 'IF_cond_exp':
self.exc_pop = Population(n_exc, IF_cond_exp, self.params['cell_params_exc'], label='exc_cells')
self.inh_pop = Population(self.params['n_inh'], IF_cond_exp, self.params['cell_params_inh'], label="inh_pop")
elif self.params['neuron_model'] == 'IF_cond_alpha':
self.exc_pop = Population(n_exc, IF_cond_alpha, self.params['cell_params_exc'], label='exc_cells')
self.inh_pop = Population(self.params['n_inh'], IF_cond_alpha, self.params['cell_params_inh'], label="inh_pop")
elif self.params['neuron_model'] == 'EIF_cond_exp_isfa_ista':
self.exc_pop = Population(n_exc, EIF_cond_exp_isfa_ista, self.params['cell_params_exc'], label='exc_cells')
self.inh_pop = Population(self.params['n_inh'], EIF_cond_exp_isfa_ista, self.params['cell_params_inh'], label="inh_pop")
else:
print '\n\nUnknown neuron model:\n\t', self.params['neuron_model']
#.........这里部分代码省略.........
示例11: run_model
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import diff [as 别名]
def run_model(sim, **options):
"""
Run a simulation using the parameters read from the file "spike_train_statistics.json"
:param sim: the PyNN backend module to be used.
:param options: should contain a keyword "simulator" which is the name of the PyNN backend module used.
:return: a tuple (`data`, `times`) where `data` is a Neo Block containing the recorded spikes
and `times` is a dict containing the time taken for different phases of the simulation.
"""
import json
from pyNN.utility import Timer
print("Running")
timer = Timer()
g = open("spike_train_statistics.json", 'r')
d = json.load(g)
N = d['param']['N']
max_rate = d['param']['max_rate']
tstop = d['param']['tstop']
d['SpikeSourcePoisson'] = {
"duration": tstop
}
if options['simulator'] == "hardware.brainscales":
hardware_preset = d['setup'].pop('hardware_preset', None)
if hardware_preset:
d['setup']['hardware'] = sim.hardwareSetup[hardware_preset]
d['SpikeSourcePoisson']['random'] = True
place = mapper.place()
timer.start()
sim.setup(**d['setup'])
spike_sources = sim.Population(N, sim.SpikeSourcePoisson, d['SpikeSourcePoisson'])
delta_rate = max_rate/N
rates = numpy.linspace(delta_rate, max_rate, N)
print("Firing rates: %s" % rates)
if PYNN07:
spike_sources.tset("rate", rates)
else:
spike_sources.set(rate=rates)
if options['simulator'] == "hardware.brainscales":
for i, spike_source in enumerate(spike_sources):
place.to(spike_source, hicann=i//8, neuron=i%64)
place.commit()
if PYNN07:
spike_sources.record()
else:
spike_sources.record('spikes')
setup_time = timer.diff()
sim.run(tstop)
run_time = timer.diff()
if PYNN07:
spike_array = spike_sources.getSpikes()
data = spike_array_to_neo(spike_array, spike_sources, tstop)
else:
data = spike_sources.get_data()
sim.end()
closing_time = timer.diff()
times = {'setup_time': setup_time, 'run_time': run_time, 'closing_time': closing_time}
return data, times
示例12: NetworkModel
# 需要导入模块: from pyNN.utility import Timer [as 别名]
# 或者: from pyNN.utility.Timer import diff [as 别名]
class NetworkModel(object):
def __init__(self, params, comm):
self.params = params
self.debug_connectivity = True
self.comm = comm
if self.comm != None:
self.pc_id, self.n_proc = self.comm.rank, self.comm.size
print "USE_MPI: yes", '\tpc_id, n_proc:', self.pc_id, self.n_proc
else:
self.pc_id, self.n_proc = 0, 1
print "MPI not used"
def import_pynn(self):
"""
This function needs only be called when this class is used in another script as imported module
"""
import pyNN
exec("from pyNN.%s import *" % self.params['simulator'])
print 'import pyNN\npyNN.version: ', pyNN.__version__
def setup(self, load_tuning_prop=False):
if load_tuning_prop:
print 'Loading tuning properties from', self.params['tuning_prop_means_fn']
self.tuning_prop_exc = np.loadtxt(self.params['tuning_prop_means_fn'])
else:
print 'Preparing tuning properties with limited range....'
x_range = (0, 1.)
y_range = (0.2, .5)
u_range = (.05, 1.0)
v_range = (-.2, .2)
tp_exc_good, tp_exc_out_of_range = utils.set_limited_tuning_properties(params, y_range, x_range, u_range, v_range, cell_type='exc')
self.tuning_prop_exc = tp_exc_good
print 'n_exc within range: ', tp_exc_good[:, 0].size
print "Saving tuning_prop to file:", params['tuning_prop_means_fn']
np.savetxt(params['tuning_prop_means_fn'], tp_exc_good)
indices, distances = utils.sort_gids_by_distance_to_stimulus(self.tuning_prop_exc, self.params['motion_params'], self.params) # cells in indices should have the highest response to the stimulus
if self.pc_id == 0:
print "Saving tuning_prop to file:", self.params['tuning_prop_means_fn']
np.savetxt(self.params['tuning_prop_means_fn'], self.tuning_prop_exc)
print 'Saving gids to record to: ', self.params['gids_to_record_fn']
np.savetxt(self.params['gids_to_record_fn'], indices[:self.params['n_gids_to_record']], fmt='%d')
# np.savetxt(params['gids_to_record_fn'], indices[:params['n_gids_to_record']], fmt='%d')
if self.comm != None:
self.comm.Barrier()
from pyNN.utility import Timer
self.timer = Timer()
self.timer.start()
self.times = {}
# # # # # # # # # # # #
# S E T U P #
# # # # # # # # # # # #
(delay_min, delay_max) = self.params['delay_range']
setup(timestep=0.1, min_delay=delay_min, max_delay=delay_max, rng_seeds_seed=self.params['seed'])
rng_v = NumpyRNG(seed = sim_cnt*3147 + self.params['seed'], parallel_safe=True) #if True, slower but does not depend on number of nodes
self.rng_conn = NumpyRNG(seed = self.params['seed'], parallel_safe=True) #if True, slower but does not depend on number of nodes
# # # # # # # # # # # # # # # # # # # # # # # # #
# R A N D O M D I S T R I B U T I O N S #
# # # # # # # # # # # # # # # # # # # # # # # # #
self.v_init_dist = RandomDistribution('normal',
(self.params['v_init'], self.params['v_init_sigma']),
rng=rng_v,
constrain='redraw',
boundaries=(-80, -60))
self.times['t_setup'] = self.timer.diff()
self.times['t_calc_conns'] = 0
if self.comm != None:
self.comm.Barrier()
def create_neurons_with_limited_tuning_properties(self, input_created):
n_exc = self.tuning_prop_exc[:, 0].size
n_inh = 0
if self.params['neuron_model'] == 'IF_cond_exp':
self.exc_pop = Population(n_exc, IF_cond_exp, self.params['cell_params_exc'], label='exc_cells')
elif self.params['neuron_model'] == 'EIF_cond_exp_isfa_ista':
self.exc_pop = Population(n_exc, EIF_cond_exp_isfa_ista, self.params['cell_params_exc'], label='exc_cells')
else:
print '\n\nUnknown neuron model:\n\t', self.params['neuron_model']
self.local_idx_exc = get_local_indices(self.exc_pop, offset=0)
self.exc_pop.initialize('v', self.v_init_dist)
if not input_created:
self.spike_times_container = [ [] for i in xrange(len(self.local_idx_exc))]
# self.local_idx_inh = get_local_indices(self.inh_pop, offset=self.params['n_exc'])
# print 'Debug, pc_id %d has local %d inh indices:' % (self.pc_id, len(self.local_idx_inh)), self.local_idx_inh
# self.inh_pop.initialize('v', self.v_init_dist)
self.times['t_create'] = self.timer.diff()
#.........这里部分代码省略.........