当前位置: 首页>>代码示例>>Python>>正文


Python Parameters.normalize方法代码示例

本文整理汇总了Python中parameters.Parameters.normalize方法的典型用法代码示例。如果您正苦于以下问题:Python Parameters.normalize方法的具体用法?Python Parameters.normalize怎么用?Python Parameters.normalize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在parameters.Parameters的用法示例。


在下文中一共展示了Parameters.normalize方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from parameters import Parameters [as 别名]
# 或者: from parameters.Parameters import normalize [as 别名]

#.........这里部分代码省略.........
            correct_repr = correct_sequence[-1:]
            assert noise_repr != correct_repr
            assert noise_sequence[:-1] == correct_sequence[:-1]
            sequence = correct_sequence[:-1]
#            r = graph.train(self.embed(sequence), self.embed([correct_repr])[0], self.embed([noise_repr])[0], self.parameters.score_biases[correct_repr], self.parameters.score_biases[noise_repr])
            r = graph.train(self.embed(sequence), self.embed(correct_repr)[0], self.embed(noise_repr)[0], self.parameters.score_biases[correct_repr], self.parameters.score_biases[noise_repr], learning_rate * weight)
            assert len(noise_repr) == 1
            assert len(correct_repr) == 1
            noise_repr = noise_repr[0]
            correct_repr = correct_repr[0]
            (loss, predictrepr, correct_score, noise_score, dsequence, dcorrect_repr, dnoise_repr, dcorrect_scorebias, dnoise_scorebias) = r
#            print
#            print "loss = ", loss
#            print "predictrepr = ", predictrepr
#            print "correct_repr = ", correct_repr, self.embed(correct_repr)[0]
#            print "noise_repr = ", noise_repr, self.embed(noise_repr)[0]
#            print "correct_score = ", correct_score
#            print "noise_score = ", noise_score
        else:
            r = graph.train(self.embeds(correct_sequences), self.embeds(noise_sequences), learning_rate * weights[0])
            if HYPERPARAMETERS["EMBEDDING_LEARNING_RATE"] != 0:
                (dcorrect_inputss, dnoise_inputss, losss, unpenalized_losss, l1penaltys, correct_scores, noise_scores) = r
            else:
                (losss, unpenalized_losss, l1penaltys, correct_scores, noise_scores) = r
#            print [d.shape for d in dcorrect_inputss]
#            print [d.shape for d in dnoise_inputss]
#            print "losss", losss.shape, losss
#            print "unpenalized_losss", unpenalized_losss.shape, unpenalized_losss
#            print "l1penaltys", l1penaltys.shape, l1penaltys
#            print "correct_scores", correct_scores.shape, correct_scores
#            print "noise_scores", noise_scores.shape, noise_scores

        import sets
        to_normalize = sets.Set()
        for ecnt in range(len(correct_sequences)):
            (loss, unpenalized_loss, correct_score, noise_score) = \
                (losss[ecnt], unpenalized_losss[ecnt], correct_scores[ecnt], noise_scores[ecnt])
            if l1penaltys.shape == ():
                assert l1penaltys == 0
                l1penalty = 0
            else:
                l1penalty = l1penaltys[ecnt]
            correct_sequence = correct_sequences[ecnt]
            noise_sequence = noise_sequences[ecnt]

            if HYPERPARAMETERS["EMBEDDING_LEARNING_RATE"] != 0:
                dcorrect_inputs = [d[ecnt] for d in dcorrect_inputss]
                dnoise_inputs = [d[ecnt] for d in dnoise_inputss]

#            print [d.shape for d in dcorrect_inputs]
#            print [d.shape for d in dnoise_inputs]
#            print "loss", loss.shape, loss
#            print "unpenalized_loss", unpenalized_loss.shape, unpenalized_loss
#            print "l1penalty", l1penalty.shape, l1penalty
#            print "correct_score", correct_score.shape, correct_score
#            print "noise_score", noise_score.shape, noise_score


            self.train_loss.add(loss)
            self.train_err.add(correct_score <= noise_score)
            self.train_lossnonzero.add(loss > 0)
            squashloss = 1./(1.+math.exp(-loss))
            self.train_squashloss.add(squashloss)
            if not LBL:
                self.train_unpenalized_loss.add(unpenalized_loss)
                self.train_l1penalty.add(l1penalty)
开发者ID:Big-Data,项目名称:neural-language-model,代码行数:70,代码来源:model.py

示例2: __init__

# 需要导入模块: from parameters import Parameters [as 别名]
# 或者: from parameters.Parameters import normalize [as 别名]

#.........这里部分代码省略.........
            sequence = correct_sequence[:-1]
#            r = graph.train(self.embed(sequence), self.embed([correct_repr])[0], self.embed([noise_repr])[0], self.parameters.score_biases[correct_repr], self.parameters.score_biases[noise_repr])
            r = graph.train(self.embed(sequence), self.embed(correct_repr)[0], self.embed(noise_repr)[0], self.parameters.score_biases[correct_repr], self.parameters.score_biases[noise_repr], learning_rate * weight)
            assert len(noise_repr) == 1
            assert len(correct_repr) == 1
            noise_repr = noise_repr[0]
            correct_repr = correct_repr[0]
            (loss, predictrepr, correct_score, noise_score, dsequence, dcorrect_repr, dnoise_repr, dcorrect_scorebias, dnoise_scorebias) = r
#            print
#            print "loss = ", loss
#            print "predictrepr = ", predictrepr
#            print "correct_repr = ", correct_repr, self.embed(correct_repr)[0]
#            print "noise_repr = ", noise_repr, self.embed(noise_repr)[0]
#            print "correct_score = ", correct_score
#            print "noise_score = ", noise_score
        else:
            noise_sequences, weights = self.corrupt_examples(correct_sequences)
            # All weights must be the same, if we first multiply by the learning rate
            for w in weights: assert w == weights[0]
            #print self.embeds(correct_sequences)
            #print self.embeds(noise_sequences)
            #print learning_rate * weights[0]
            r = graph.train(self.embeds(correct_sequences), self.embeds(noise_sequences), learning_rate * weights[0])
            (dcorrect_inputss, dnoise_inputss, losss, unpenalized_losss, l1penaltys, correct_scores, noise_scores) = r
#            print [d.shape for d in dcorrect_inputss]
#            print [d.shape for d in dnoise_inputss]
#            print "losss", losss.shape, losss
#            print "unpenalized_losss", unpenalized_losss.shape, unpenalized_losss
#            print "l1penaltys", l1penaltys.shape, l1penaltys
#            print "correct_scores", correct_scores.shape, correct_scores
#            print "noise_scores", noise_scores.shape, noise_scores

        import sets
        to_normalize = sets.Set()
        for ecnt in range(len(correct_sequences)):
            (loss, unpenalized_loss, correct_score, noise_score) = \
                (losss[ecnt], unpenalized_losss[ecnt], correct_scores[ecnt], noise_scores[ecnt])
            if l1penaltys.shape == ():
                assert l1penaltys == 0
                l1penalty = 0
            else:
                l1penalty = l1penaltys[ecnt]
            correct_sequence = correct_sequences[ecnt]
            noise_sequence = noise_sequences[ecnt]

            dcorrect_inputs = [d[ecnt] for d in dcorrect_inputss]
            dnoise_inputs = [d[ecnt] for d in dnoise_inputss]

#            print [d.shape for d in dcorrect_inputs]
#            print [d.shape for d in dnoise_inputs]
#            print "loss", loss.shape, loss
#            print "unpenalized_loss", unpenalized_loss.shape, unpenalized_loss
#            print "l1penalty", l1penalty.shape, l1penalty
#            print "correct_score", correct_score.shape, correct_score
#            print "noise_score", noise_score.shape, noise_score


            self.train_loss.add(loss)
            self.train_err.add(correct_score <= noise_score)
            self.train_lossnonzero.add(loss > 0)
            squashloss = 1./(1.+math.exp(-loss))
            self.train_squashloss.add(squashloss)
            if not LBL:
                self.train_unpenalized_loss.add(unpenalized_loss)
                self.train_l1penalty.add(l1penalty)
                self.train_unpenalized_lossnonzero.add(unpenalized_loss > 0)
开发者ID:everwind,项目名称:DNNNLP,代码行数:70,代码来源:model.py

示例3: __init__

# 需要导入模块: from parameters import Parameters [as 别名]
# 或者: from parameters.Parameters import normalize [as 别名]

#.........这里部分代码省略.........
            # Backoff to 0gram smoothing if we fail 10 times to get noise.
            if cnt > 10: e[-1] = random.randint(0, self.parameters.vocab_size-1)
        weight = 1./pr
        return e, weight

    def corrupt_examples(self, correct_sequences):
        noise_sequences = []
        weights = []
        for e in correct_sequences:
            noise_sequence, weight = self.corrupt_example(e)
            noise_sequences.append(noise_sequence)
            weights.append(weight)
        return noise_sequences, weights

    def train(self, correct_sequences):
        from hyperparameters import HYPERPARAMETERS
        learning_rate = HYPERPARAMETERS["LEARNING_RATE"]
       
        noise_sequences, weights = self.corrupt_examples(correct_sequences)
        # All weights must be the same, if we first multiply by the learning rate
        for w in weights: assert w == weights[0]

        r = graph.train(self.embeds(correct_sequences), self.embeds(noise_sequences), learning_rate * weights[0])
        (dcorrect_inputss, dnoise_inputss, losss, unpenalized_losss, l1penaltys, correct_scores, noise_scores) = r
#            print [d.shape for d in dcorrect_inputss]
#            print [d.shape for d in dnoise_inputss]
#            print "losss", losss.shape, losss
#            print "unpenalized_losss", unpenalized_losss.shape, unpenalized_losss
#            print "l1penaltys", l1penaltys.shape, l1penaltys
#            print "correct_scores", correct_scores.shape, correct_scores
#            print "noise_scores", noise_scores.shape, noise_scores

        import sets
        to_normalize = sets.Set()
        for ecnt in range(len(correct_sequences)):
            (loss, unpenalized_loss, correct_score, noise_score) = \
                (losss[ecnt], unpenalized_losss[ecnt], correct_scores[ecnt], noise_scores[ecnt])
            if l1penaltys.shape == ():
                assert l1penaltys == 0
                l1penalty = 0
            else:
                l1penalty = l1penaltys[ecnt]
            correct_sequence = correct_sequences[ecnt]
            noise_sequence = noise_sequences[ecnt]

            dcorrect_inputs = [d[ecnt] for d in dcorrect_inputss]
            dnoise_inputs = [d[ecnt] for d in dnoise_inputss]

#            print [d.shape for d in dcorrect_inputs]
#            print [d.shape for d in dnoise_inputs]
#            print "loss", loss.shape, loss
#            print "unpenalized_loss", unpenalized_loss.shape, unpenalized_loss
#            print "l1penalty", l1penalty.shape, l1penalty
#            print "correct_score", correct_score.shape, correct_score
#            print "noise_score", noise_score.shape, noise_score


            self.train_loss.add(loss)
            self.train_err.add(correct_score <= noise_score)
            self.train_lossnonzero.add(loss > 0)
            squashloss = 1./(1.+math.exp(-loss))
            self.train_squashloss.add(squashloss)

            self.train_unpenalized_loss.add(unpenalized_loss)
            self.train_l1penalty.add(l1penalty)
            self.train_unpenalized_lossnonzero.add(unpenalized_loss > 0)
开发者ID:everwind,项目名称:DNNNLP,代码行数:70,代码来源:model.py


注:本文中的parameters.Parameters.normalize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。