本文整理汇总了Python中parameters.Parameters.calculate_alpha方法的典型用法代码示例。如果您正苦于以下问题:Python Parameters.calculate_alpha方法的具体用法?Python Parameters.calculate_alpha怎么用?Python Parameters.calculate_alpha使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类parameters.Parameters
的用法示例。
在下文中一共展示了Parameters.calculate_alpha方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from parameters import Parameters [as 别名]
# 或者: from parameters.Parameters import calculate_alpha [as 别名]
#.........这里部分代码省略.........
return high, low
def differentiate(self):
for word in self.first_list:
word.value_of_differ_feature = word.normalized_features[self.key_for_differ_feature]
for word in self.second_list:
word.value_of_differ_feature = word.normalized_features[self.key_for_differ_feature]
if self.which_higher == "first":
self.first_list, self.second_list = self.high_low(self.first_list, self.second_list)
elif self.which_higher == "second":
self.second_list, self.first_list = self.high_low(self.second_list, self.first_list)
def create_list_from_to_choose(self, parameters_for_one_list):
filtered_list = []
for word in self.words:
if is_match(word, parameters_for_one_list):
# print word.features["pos"]
filtered_list.append(word)
return filtered_list
def split(self):
if self.first_list == self.second_list:
new = []
new += self.first_list
random.shuffle(new)
self.first_list = []
self.first_list += new[: len(new) / 2]
self.second_list = []
self.second_list += new[len(new) / 2 :]
def setup_parameters(self):
if self.parameters.bonferroni != "off":
self.parameters.calculate_alpha()
self.same = self.parameters.same
self.number_of_same = len(self.same)
self.length = self.parameters.length
self.statistics = self.parameters.statistics
for word in self.first_list:
# это массив из значений фич, которые не должны отличаться
word.same = [word.normalized_features[key] for key in self.same]
for word in self.second_list:
word.same = [word.normalized_features[key] for key in self.same]
def add_first(self):
self.first_list += self.first_list_output
self.second_list += self.second_list_output
self.first_list_output = []
self.second_list_output = []
# вытаскиваем случайное слово из листа
index = random.randint(0, len(self.first_list) - 1)
word = self.first_list[index]
# прибавляем параметры добавленного слова в счетчик
for feature in self.first_list_equality_counter:
# если значение этого параметра есть среди значений в счетчике, то плюс 1
if word.features[feature] in self.first_list_equality_counter[feature]:
self.first_list_equality_counter[feature][word.features[feature]] += 1
self.first_list_output.append(word)
del self.first_list[index]