当前位置: 首页>>代码示例>>Python>>正文


Python StataReader.value_labels方法代码示例

本文整理汇总了Python中pandas.io.stata.StataReader.value_labels方法的典型用法代码示例。如果您正苦于以下问题:Python StataReader.value_labels方法的具体用法?Python StataReader.value_labels怎么用?Python StataReader.value_labels使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pandas.io.stata.StataReader的用法示例。


在下文中一共展示了StataReader.value_labels方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: read_stata

# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import value_labels [as 别名]
	def read_stata(self, *args, **kwargs):
		reader = StataReader(*args, **kwargs)
		self.df = reader.data()
		self.variable_labels = reader.variable_labels()
		self._initialize_variable_labels()
		self.value_labels = reader.value_labels()
		# self.data_label = reader.data_label()
		return self.df
开发者ID:shafiquejamal,项目名称:easyframes,代码行数:10,代码来源:easyframes.py

示例2: _retrieve_data

# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import value_labels [as 别名]
def _retrieve_data(dtafile):
	'''retrieve data dictionary from STATA .dta file'''

	datafile = os.path.basename(dtafile).split('.')
	if len(datafile) != 2:
		raise ValueError('dtafile must look like "file.dta"')
	if datafile[1] != 'dta':
		raise ValueError('dtafile must have ".dta" extension')

	base    = datafile[0]
	hdf     = os.path.join('.data_cache', '{}.h5'.format(base))
	lPickle = os.path.join('.data_cache', '{}_labels.pickle'.format(base))
	vPickle = os.path.join('.data_cache', '{}_vlabels.pickle'.format(base))
	dTime   = os.path.join('.data_cache', '{}_dtime.pickle'.format(base))

	if all([os.path.isfile(d) for d in [hdf, lPickle, vPickle, dTime]]):

		if os.path.getmtime(dtafile) == cPickle.load(open(dTime, 'rb')):
			from pandas import read_hdf

			data = read_hdf(hdf, 'data')
			labels = cPickle.load(open(lPickle, 'rb'))
			vlabels = cPickle.load(open(vPickle, 'rb'))

	elif not os.path.isdir('.data_cache'):
		os.makedirs('.data_cache')

	try:
		data
	except:
		from pandas.io.stata import StataReader
		from pandas import HDFStore

		print "Data is changed or no cached data found"
		print "Creating data objects from {}".format(dtafile)

		reader = StataReader(dtafile)
		data = reader.data(convert_dates=False,convert_categoricals=False)
		labels = reader.variable_labels()
		vlabels = reader.value_labels()

		store = HDFStore(hdf)
		store['data'] = data
		cPickle.dump(labels, open(lPickle, 'wb'))
		cPickle.dump(vlabels, open(vPickle, 'wb'))
		cPickle.dump(os.path.getmtime(dtafile), open(dTime, 'wb'))

		store.close()

	return {'data':data, 'labels':labels, 'vlabels':vlabels}
开发者ID:jtorcasso,项目名称:micro-forecasting,代码行数:52,代码来源:pystata.py

示例3: meta_labels

# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import value_labels [as 别名]
    def meta_labels(self):
        """Read the labels for the variables and code values for the variables, using the 
        Stata reader. """
        import re
        import os
        import struct
        import pandas as pd

        from pandas.io.stata import StataReader
   
        var_labels = None
        val_labels = None

        if not os.path.exists(self.filesystem.path('meta','variable_labels.yaml')):

            for name, fn in self.sources():
   
                if name.endswith('l'):

                    self.log("Getting labels for {}  from {} (This is really slow)".format(name, fn))
   
                    reader = StataReader(fn)

                    df = reader.data() # Can't get labels before reading data
            
                    var_labels = reader.variable_labels()
                    val_labels = reader.value_labels()
                    
                    break
                    
                    
            self.filesystem.write_yaml(var_labels, 'meta','variable_labels.yaml')
            self.filesystem.write_yaml(val_labels, 'meta','value_labels.yaml')
            
        else:
            self.log("Skipping extracts; already exist")

        # The value codes include both the value codes and the imputation codes. The imputation codes
        # are extracted  as positive integers, when they really should be negative. 
        table_values = {}
        imputation_values = {}
        
        if not val_labels:
            val_labels = self.filesystem.read_yaml('meta','value_labels.yaml')
            
        for k,v in val_labels.items():
            table_values[k] = {}
            imputation_values[k] = { -10:  'NO IMPUTATION' }
        
            for code, code_val in v.items():
                
                signed_code = struct.unpack('i',struct.pack('I',int(code)))[0] # Convert the unsigned to signed
                
                if signed_code < 0:
                    imputation_values[k][signed_code] = code_val
                else:
                    table_values[k][code] = code_val

        self.filesystem.write_yaml(table_values, 'meta','table_codes.yaml')
        self.filesystem.write_yaml(imputation_values, 'meta','imputation_codes.yaml')
            
        self.log("{} table variables".format(len(table_values)))
        self.log("{} imputation variables".format(len(imputation_values)))

        return True
开发者ID:CivicKnowledge,项目名称:ambry10-bundles,代码行数:67,代码来源:old-bundle.py


注:本文中的pandas.io.stata.StataReader.value_labels方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。