本文整理汇总了Python中pandas.io.stata.StataReader.data方法的典型用法代码示例。如果您正苦于以下问题:Python StataReader.data方法的具体用法?Python StataReader.data怎么用?Python StataReader.data使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.io.stata.StataReader
的用法示例。
在下文中一共展示了StataReader.data方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_read_dta1
# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import data [as 别名]
def test_read_dta1(self):
reader = StataReader(self.dta1)
parsed = reader.data()
reader_13 = StataReader(self.dta1_13)
parsed_13 = reader_13.data()
# Pandas uses np.nan as missing value.
# Thus, all columns will be of type float, regardless of their name.
expected = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)],
columns=['float_miss', 'double_miss', 'byte_miss',
'int_miss', 'long_miss'])
# this is an oddity as really the nan should be float64, but
# the casting doesn't fail so need to match stata here
expected['float_miss'] = expected['float_miss'].astype(np.float32)
tm.assert_frame_equal(parsed, expected)
tm.assert_frame_equal(parsed_13, expected)
示例2: read_stata
# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import data [as 别名]
def read_stata(self, *args, **kwargs):
reader = StataReader(*args, **kwargs)
self.df = reader.data()
self.variable_labels = reader.variable_labels()
self._initialize_variable_labels()
self.value_labels = reader.value_labels()
# self.data_label = reader.data_label()
return self.df
示例3: test_read_dta1
# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import data [as 别名]
def test_read_dta1(self):
reader_114 = StataReader(self.dta1_114)
parsed_114 = reader_114.data()
reader_117 = StataReader(self.dta1_117)
parsed_117 = reader_117.data()
# Pandas uses np.nan as missing value.
# Thus, all columns will be of type float, regardless of their name.
expected = DataFrame(
[(np.nan, np.nan, np.nan, np.nan, np.nan)],
columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"],
)
# this is an oddity as really the nan should be float64, but
# the casting doesn't fail so need to match stata here
expected["float_miss"] = expected["float_miss"].astype(np.float32)
tm.assert_frame_equal(parsed_114, expected)
tm.assert_frame_equal(parsed_117, expected)
示例4: test_data_method
# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import data [as 别名]
def test_data_method(self):
# Minimal testing of legacy data method
reader_114 = StataReader(self.dta1_114)
with warnings.catch_warnings(record=True) as w:
parsed_114_data = reader_114.data()
reader_114 = StataReader(self.dta1_114)
parsed_114_read = reader_114.read()
tm.assert_frame_equal(parsed_114_data, parsed_114_read)
示例5: test_read_dta1
# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import data [as 别名]
def test_read_dta1(self):
reader = StataReader(self.dta1)
parsed = reader.data()
# Pandas uses np.nan as missing value. Thus, all columns will be of type float, regardless of their name.
expected = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)],
columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss'])
for i, col in enumerate(parsed.columns):
np.testing.assert_almost_equal(
parsed[col],
expected[expected.columns[i]]
)
示例6: _retrieve_data
# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import data [as 别名]
def _retrieve_data(dtafile):
'''retrieve data dictionary from STATA .dta file'''
datafile = os.path.basename(dtafile).split('.')
if len(datafile) != 2:
raise ValueError('dtafile must look like "file.dta"')
if datafile[1] != 'dta':
raise ValueError('dtafile must have ".dta" extension')
base = datafile[0]
hdf = os.path.join('.data_cache', '{}.h5'.format(base))
lPickle = os.path.join('.data_cache', '{}_labels.pickle'.format(base))
vPickle = os.path.join('.data_cache', '{}_vlabels.pickle'.format(base))
dTime = os.path.join('.data_cache', '{}_dtime.pickle'.format(base))
if all([os.path.isfile(d) for d in [hdf, lPickle, vPickle, dTime]]):
if os.path.getmtime(dtafile) == cPickle.load(open(dTime, 'rb')):
from pandas import read_hdf
data = read_hdf(hdf, 'data')
labels = cPickle.load(open(lPickle, 'rb'))
vlabels = cPickle.load(open(vPickle, 'rb'))
elif not os.path.isdir('.data_cache'):
os.makedirs('.data_cache')
try:
data
except:
from pandas.io.stata import StataReader
from pandas import HDFStore
print "Data is changed or no cached data found"
print "Creating data objects from {}".format(dtafile)
reader = StataReader(dtafile)
data = reader.data(convert_dates=False,convert_categoricals=False)
labels = reader.variable_labels()
vlabels = reader.value_labels()
store = HDFStore(hdf)
store['data'] = data
cPickle.dump(labels, open(lPickle, 'wb'))
cPickle.dump(vlabels, open(vPickle, 'wb'))
cPickle.dump(os.path.getmtime(dtafile), open(dTime, 'wb'))
store.close()
return {'data':data, 'labels':labels, 'vlabels':vlabels}
示例7: StataReader
# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import data [as 别名]
from setup_prediction_lag import predict_abc
from load_data import extrap, abcd
from paths import paths
#----------------------------------------------------------------
seed = 1234
aux_draw = 99
#----------------------------------------------------------------
# bring in file with indexes for extrapolation bootstrap
reader = StataReader(paths.psid_bsid)
psid = reader.data(convert_dates=False, convert_categoricals=False)
psid = psid.iloc[:,0:aux_draw] # limit PSID to the number of repetitions you need
nlsy = pd.read_csv(paths.nlsy_bsid)
# set up extrapolation indexes (there are multiple data sets)
extrap_index = pd.concat([psid, nlsy], axis=0, keys=('psid', 'nlsy'), names=('dataset','id'))
extrap_source= ['psid' for j in range(0, psid.shape[0])] + ['nlsy' for k in range(0, nlsy.shape[0])]
#----------------------------------------------------------------
def boot_predict_aux(extrap, adraw):
# prepare indexes of extrapolation data for bootstrap
extrap_draw = extrap_index.loc[:, 'draw{}'.format(adraw)]
extrap_tuples = list(zip(*[extrap_source,extrap_draw]))
for i in xrange(len(extrap_tuples) - 1, -1, -1):
示例8: meta_labels
# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import data [as 别名]
def meta_labels(self):
"""Read the labels for the variables and code values for the variables, using the
Stata reader. """
import re
import os
import struct
import pandas as pd
from pandas.io.stata import StataReader
var_labels = None
val_labels = None
if not os.path.exists(self.filesystem.path('meta','variable_labels.yaml')):
for name, fn in self.sources():
if name.endswith('l'):
self.log("Getting labels for {} from {} (This is really slow)".format(name, fn))
reader = StataReader(fn)
df = reader.data() # Can't get labels before reading data
var_labels = reader.variable_labels()
val_labels = reader.value_labels()
break
self.filesystem.write_yaml(var_labels, 'meta','variable_labels.yaml')
self.filesystem.write_yaml(val_labels, 'meta','value_labels.yaml')
else:
self.log("Skipping extracts; already exist")
# The value codes include both the value codes and the imputation codes. The imputation codes
# are extracted as positive integers, when they really should be negative.
table_values = {}
imputation_values = {}
if not val_labels:
val_labels = self.filesystem.read_yaml('meta','value_labels.yaml')
for k,v in val_labels.items():
table_values[k] = {}
imputation_values[k] = { -10: 'NO IMPUTATION' }
for code, code_val in v.items():
signed_code = struct.unpack('i',struct.pack('I',int(code)))[0] # Convert the unsigned to signed
if signed_code < 0:
imputation_values[k][signed_code] = code_val
else:
table_values[k][code] = code_val
self.filesystem.write_yaml(table_values, 'meta','table_codes.yaml')
self.filesystem.write_yaml(imputation_values, 'meta','imputation_codes.yaml')
self.log("{} table variables".format(len(table_values)))
self.log("{} imputation variables".format(len(imputation_values)))
return True