当前位置: 首页>>代码示例>>Python>>正文


Python StataReader.read方法代码示例

本文整理汇总了Python中pandas.io.stata.StataReader.read方法的典型用法代码示例。如果您正苦于以下问题:Python StataReader.read方法的具体用法?Python StataReader.read怎么用?Python StataReader.read使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pandas.io.stata.StataReader的用法示例。


在下文中一共展示了StataReader.read方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_read_dta1

# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import read [as 别名]
    def test_read_dta1(self):
        reader_114 = StataReader(self.dta1_114)
        parsed_114 = reader_114.read()
        reader_117 = StataReader(self.dta1_117)
        parsed_117 = reader_117.read()
        # Pandas uses np.nan as missing value.
        # Thus, all columns will be of type float, regardless of their name.
        expected = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)],
                             columns=['float_miss', 'double_miss', 'byte_miss',
                                      'int_miss', 'long_miss'])

        # this is an oddity as really the nan should be float64, but
        # the casting doesn't fail so need to match stata here
        expected['float_miss'] = expected['float_miss'].astype(np.float32)

        tm.assert_frame_equal(parsed_114, expected)
        tm.assert_frame_equal(parsed_117, expected)
开发者ID:agijsberts,项目名称:pandas,代码行数:19,代码来源:test_stata.py

示例2: test_data_method

# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import read [as 别名]
    def test_data_method(self):
        # Minimal testing of legacy data method
        reader_114 = StataReader(self.dta1_114)
        with warnings.catch_warnings(record=True) as w:
            parsed_114_data = reader_114.data()

        reader_114 = StataReader(self.dta1_114)
        parsed_114_read = reader_114.read()
        tm.assert_frame_equal(parsed_114_data, parsed_114_read)
开发者ID:agijsberts,项目名称:pandas,代码行数:11,代码来源:test_stata.py

示例3: StataReader

# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import read [as 别名]
if not os.path.exists(paths.data):
	os.mkdir(paths.data)

'''Load and Cache Datasets
   -----------------------

Notes:
- Ensures no overlap in id
- Trims observations with any labor income over $300,000 (U.S., 2014)
'''

#--------------------------------------------------------------------

print "Loading PSID"
reader = StataReader(paths.psid)
psid = reader.read(convert_dates=False, convert_categoricals=False)
psid = psid.dropna(subset=['id']).set_index('id')

# Trimming
inc = psid.filter(regex='^inc_labor[0-9][0-9]')
psid = psid.loc[psid.male == 0]
psid = psid.loc[psid.black == 1]
psid = psid.loc[((inc < inc.quantile(0.90)) | (inc.isnull())).all(axis=1)]

# Interpolating
plong = pd.wide_to_long(psid[inc.columns].reset_index(), 
    ['inc_labor'], i='id', j='age').sort_index()
plong = plong.interpolate(limit=5)
pwide = plong.unstack()
pwide.columns = pwide.columns.droplevel(0)
pwide.columns = ['{}{}'.format('inc_labor', a) for a in pwide.columns]
开发者ID:jorgelgarcia,项目名称:abc-treatmenteffects-finalseason,代码行数:33,代码来源:setup_data.py

示例4: StataReader

# 需要导入模块: from pandas.io.stata import StataReader [as 别名]
# 或者: from pandas.io.stata.StataReader import read [as 别名]
Desc:   This code selects the IPW variables for specific ABC outcomes.
        We only do this for the pooled sample to increase power. We use
        a linear probiaility model for this. We select the 3 variables
        that minimize the BIC.
"""
import pandas as pd
from pandas.io.stata import StataReader
import numpy as np
import statsmodels.api as sm
from patsy import dmatrices
import itertools
from paths import paths

# import data
reader = StataReader(paths.abccare)
data = reader.read(convert_dates=False, convert_categoricals=False)
data = data.set_index('id')
data = data.sort_index()
data.drop(data.loc[(data.RV==1) & (data.R==0)].index, inplace=True)

# bring in outcomes files, and find the ABC-only/CARE-only ones
outcomes = pd.read_csv(paths.outcomes, index_col='variable')
only_abc = outcomes.loc[outcomes.only_abc == 1].index
only_care = outcomes.loc[outcomes.only_care == 1].index

bank = pd.read_csv(paths.controls)
ipwvars = np.unique(outcomes.loc[~outcomes.ipw_var.isnull(),'ipw_var'].get_values())

# generate the list of all possible models
models = itertools.chain.from_iterable([itertools.combinations(bank.loc[:, 'variable'], 3)])
models = list(models)
开发者ID:jorgelgarcia,项目名称:abc-treatmenteffects-finalseason,代码行数:33,代码来源:ipw_selection.py


注:本文中的pandas.io.stata.StataReader.read方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。