本文整理汇总了Python中nipype.MapNode.terminal_output方法的典型用法代码示例。如果您正苦于以下问题:Python MapNode.terminal_output方法的具体用法?Python MapNode.terminal_output怎么用?Python MapNode.terminal_output使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nipype.MapNode
的用法示例。
在下文中一共展示了MapNode.terminal_output方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_workflow
# 需要导入模块: from nipype import MapNode [as 别名]
# 或者: from nipype.MapNode import terminal_output [as 别名]
#.........这里部分代码省略.........
bandpass = Node(Function(input_names=['files', 'lowpass_freq',
'highpass_freq', 'fs'],
output_names=['out_files'],
function=bandpass_filter,
imports=imports),
name='bandpass_unsmooth')
bandpass.inputs.fs = 1. / TR
bandpass.inputs.highpass_freq = highpass_freq
bandpass.inputs.lowpass_freq = lowpass_freq
wf.connect(filter2, 'out_res', bandpass, 'files')
"""Smooth the functional data using
:class:`nipype.interfaces.fsl.IsotropicSmooth`.
"""
smooth = MapNode(interface=fsl.IsotropicSmooth(), name="smooth", iterfield=["in_file"])
smooth.inputs.fwhm = vol_fwhm
wf.connect(bandpass, 'out_files', smooth, 'in_file')
collector = Node(Merge(2), name='collect_streams')
wf.connect(smooth, 'out_file', collector, 'in1')
wf.connect(bandpass, 'out_files', collector, 'in2')
"""
Transform the remaining images. First to anatomical and then to target
"""
warpall = MapNode(ants.ApplyTransforms(), iterfield=['input_image'],
name='warpall')
warpall.inputs.input_image_type = 3
warpall.inputs.interpolation = 'Linear'
warpall.inputs.invert_transform_flags = [False, False]
warpall.terminal_output = 'file'
warpall.inputs.reference_image = target_file
warpall.inputs.args = '--float'
warpall.inputs.num_threads = 2
warpall.plugin_args = {'sbatch_args': '-c%d' % 2}
# transform to target
wf.connect(collector, 'out', warpall, 'input_image')
wf.connect(registration, 'outputspec.transforms', warpall, 'transforms')
mask_target = Node(fsl.ImageMaths(op_string='-bin'), name='target_mask')
wf.connect(registration, 'outputspec.anat2target', mask_target, 'in_file')
maskts = MapNode(fsl.ApplyMask(), iterfield=['in_file'], name='ts_masker')
wf.connect(warpall, 'output_image', maskts, 'in_file')
wf.connect(mask_target, 'out_file', maskts, 'mask_file')
# map to surface
# extract aparc+aseg ROIs
# extract subcortical ROIs
# extract target space ROIs
# combine subcortical and cortical rois into a single cifti file
#######
# Convert aparc to subject functional space
# Sample the average time series in aparc ROIs
sampleaparc = MapNode(freesurfer.SegStats(default_color_table=True),
iterfield=['in_file', 'summary_file',
'avgwf_txt_file'],
name='aparc_ts')
sampleaparc.inputs.segment_id = ([8] + list(range(10, 14)) + [17, 18, 26, 47] +