当前位置: 首页>>代码示例>>Python>>正文


Python MapNode.plugin_args方法代码示例

本文整理汇总了Python中nipype.MapNode.plugin_args方法的典型用法代码示例。如果您正苦于以下问题:Python MapNode.plugin_args方法的具体用法?Python MapNode.plugin_args怎么用?Python MapNode.plugin_args使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nipype.MapNode的用法示例。


在下文中一共展示了MapNode.plugin_args方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_timeseries_model_workflow

# 需要导入模块: from nipype import MapNode [as 别名]
# 或者: from nipype.MapNode import plugin_args [as 别名]
def create_timeseries_model_workflow(name="model", exp_info=None):

    # Default experiment parameters for generating graph inamge, testing, etc.
    if exp_info is None:
        exp_info = default_experiment_parameters()

    # Define constant inputs
    inputs = ["design_file", "realign_file", "artifact_file", "timeseries"]

    # Possibly add the regressor file to the inputs
    if exp_info["regressor_file"] is not None:
        inputs.append("regressor_file")

    # Define the workflow inputs
    inputnode = Node(IdentityInterface(inputs), "inputs")

    # Set up the experimental design
    modelsetup = MapNode(Function(["exp_info",
                                   "design_file",
                                   "realign_file",
                                   "artifact_file",
                                   "regressor_file",
                                   "run"],
                                  ["design_matrix_file",
                                   "contrast_file",
                                   "design_matrix_pkl",
                                   "report"],
                                  setup_model,
                                  imports),
                          ["realign_file", "artifact_file", "run"],
                          "modelsetup")
    modelsetup.inputs.exp_info = exp_info
    if exp_info["regressor_file"] is None:
        modelsetup.inputs.regressor_file = None

    # Use film_gls to estimate the timeseries model
    modelestimate = MapNode(fsl.FILMGLS(smooth_autocorr=True,
                                        mask_size=5,
                                        threshold=1000),
                            ["design_file", "in_file"],
                            "modelestimate")

    # Run the contrast estimation routine
    contrastestimate = MapNode(fsl.ContrastMgr(),
                               ["tcon_file",
                                "dof_file",
                                "corrections",
                                "param_estimates",
                                "sigmasquareds"],
                               "contrastestimate")

    calcrsquared = MapNode(Function(["design_matrix_pkl",
                                     "timeseries",
                                     "pe_files"],
                                    ["r2_files",
                                     "ss_files"],
                                    compute_rsquareds,
                                    imports),
                           ["design_matrix_pkl",
                            "timeseries",
                            "pe_files"],
                           "calcrsquared")
    calcrsquared.plugin_args = dict(qsub_args="-l h_vmem=8G")

    # Save the experiment info for this run
    dumpjson = MapNode(Function(["exp_info", "timeseries"], ["json_file"],
                                dump_exp_info, imports),
                    "timeseries",
                    "dumpjson")
    dumpjson.inputs.exp_info = exp_info

    # Report on the results of the model
    modelreport = MapNode(Function(["timeseries",
                                    "sigmasquareds_file",
                                    "zstat_files",
                                    "r2_files"],
                                   ["report"],
                                   report_model,
                                   imports),
                          ["timeseries", "sigmasquareds_file",
                           "zstat_files", "r2_files"],
                          "modelreport")

    # Define the workflow outputs
    outputnode = Node(IdentityInterface(["results",
                                         "copes",
                                         "varcopes",
                                         "zstats",
                                         "r2_files",
                                         "ss_files",
                                         "report",
                                         "design_mat",
                                         "contrast_mat",
                                         "design_pkl",
                                         "design_report",
                                         "json_file"]),
                      "outputs")

    # Define the workflow and connect the nodes
    model = Workflow(name=name)
#.........这里部分代码省略.........
开发者ID:toddt,项目名称:lyman,代码行数:103,代码来源:model.py

示例2: create_workflow

# 需要导入模块: from nipype import MapNode [as 别名]
# 或者: from nipype.MapNode import plugin_args [as 别名]
def create_workflow(files,
                    target_file,
                    subject_id,
                    TR,
                    slice_times,
                    norm_threshold=1,
                    num_components=5,
                    vol_fwhm=None,
                    surf_fwhm=None,
                    lowpass_freq=-1,
                    highpass_freq=-1,
                    subjects_dir=None,
                    sink_directory=os.getcwd(),
                    target_subject=['fsaverage3', 'fsaverage4'],
                    name='resting'):

    wf = Workflow(name=name)

    # Rename files in case they are named identically
    name_unique = MapNode(Rename(format_string='rest_%(run)02d'),
                          iterfield=['in_file', 'run'],
                          name='rename')
    name_unique.inputs.keep_ext = True
    name_unique.inputs.run = list(range(1, len(files) + 1))
    name_unique.inputs.in_file = files

    realign = Node(nipy.SpaceTimeRealigner(), name="spacetime_realign")
    realign.inputs.slice_times = slice_times
    realign.inputs.tr = TR
    realign.inputs.slice_info = 2
    realign.plugin_args = {'sbatch_args': '-c%d' % 4}

    # Compute TSNR on realigned data regressing polynomials up to order 2
    tsnr = MapNode(TSNR(regress_poly=2), iterfield=['in_file'], name='tsnr')
    wf.connect(realign, "out_file", tsnr, "in_file")

    # Compute the median image across runs
    calc_median = Node(Function(input_names=['in_files'],
                                output_names=['median_file'],
                                function=median,
                                imports=imports),
                       name='median')
    wf.connect(tsnr, 'detrended_file', calc_median, 'in_files')

    """Segment and Register
    """

    registration = create_reg_workflow(name='registration')
    wf.connect(calc_median, 'median_file', registration, 'inputspec.mean_image')
    registration.inputs.inputspec.subject_id = subject_id
    registration.inputs.inputspec.subjects_dir = subjects_dir
    registration.inputs.inputspec.target_image = target_file

    """Quantify TSNR in each freesurfer ROI
    """

    get_roi_tsnr = MapNode(fs.SegStats(default_color_table=True),
                           iterfield=['in_file'], name='get_aparc_tsnr')
    get_roi_tsnr.inputs.avgwf_txt_file = True
    wf.connect(tsnr, 'tsnr_file', get_roi_tsnr, 'in_file')
    wf.connect(registration, 'outputspec.aparc', get_roi_tsnr, 'segmentation_file')

    """Use :class:`nipype.algorithms.rapidart` to determine which of the
    images in the functional series are outliers based on deviations in
    intensity or movement.
    """

    art = Node(interface=ArtifactDetect(), name="art")
    art.inputs.use_differences = [True, True]
    art.inputs.use_norm = True
    art.inputs.norm_threshold = norm_threshold
    art.inputs.zintensity_threshold = 9
    art.inputs.mask_type = 'spm_global'
    art.inputs.parameter_source = 'NiPy'

    """Here we are connecting all the nodes together. Notice that we add the merge node only if you choose
    to use 4D. Also `get_vox_dims` function is passed along the input volume of normalise to set the optimal
    voxel sizes.
    """

    wf.connect([(name_unique, realign, [('out_file', 'in_file')]),
                (realign, art, [('out_file', 'realigned_files')]),
                (realign, art, [('par_file', 'realignment_parameters')]),
                ])

    def selectindex(files, idx):
        import numpy as np
        from nipype.utils.filemanip import filename_to_list, list_to_filename
        return list_to_filename(np.array(filename_to_list(files))[idx].tolist())

    mask = Node(fsl.BET(), name='getmask')
    mask.inputs.mask = True
    wf.connect(calc_median, 'median_file', mask, 'in_file')
    # get segmentation in normalized functional space

    def merge_files(in1, in2):
        out_files = filename_to_list(in1)
        out_files.extend(filename_to_list(in2))
        return out_files

#.........这里部分代码省略.........
开发者ID:Conxz,项目名称:nipype,代码行数:103,代码来源:rsfmri_vol_surface_preprocessing_nipy.py

示例3: create_timeseries_model_workflow

# 需要导入模块: from nipype import MapNode [as 别名]
# 或者: from nipype.MapNode import plugin_args [as 别名]
def create_timeseries_model_workflow(name="model", exp_info=None):

    # Default experiment parameters for generating graph image, testing, etc.
    if exp_info is None:
        exp_info = lyman.default_experiment_parameters()

    # Define constant inputs
    inputs = ["realign_file", "artifact_file", "timeseries"]

    # Possibly add the design and regressor files to the inputs
    if exp_info["design_name"] is not None:
        inputs.append("design_file")
    if exp_info["regressor_file"] is not None:
        inputs.append("regressor_file")

    # Define the workflow inputs
    inputnode = Node(IdentityInterface(inputs), "inputs")

    # Set up the experimental design
    modelsetup = MapNode(ModelSetup(exp_info=exp_info),
                         ["timeseries", "realign_file", "artifact_file"],
                         "modelsetup")

    # For some nodes, make it possible to request extra memory
    mem_request = {"qsub_args": "-l h_vmem=%dG" % exp_info["memory_request"]}

    # Use film_gls to estimate the timeseries model
    modelestimate = MapNode(fsl.FILMGLS(smooth_autocorr=True,
                                        mask_size=5,
                                        threshold=100),
                            ["design_file", "in_file"],
                            "modelestimate")
    modelestimate.plugin_args = mem_request

    # Run the contrast estimation routine
    contrastestimate = MapNode(fsl.ContrastMgr(),
                               ["tcon_file",
                                "dof_file",
                                "corrections",
                                "param_estimates",
                                "sigmasquareds"],
                               "contrastestimate")
    contrastestimate.plugin_args = mem_request

    # Compute summary statistics about the model fit
    modelsummary = MapNode(ModelSummary(),
                           ["design_matrix_pkl",
                            "timeseries",
                            "pe_files"],
                           "modelsummary")
    modelsummary.plugin_args = mem_request

    # Save the experiment info for this run
    # Save the experiment info for this run
    saveparams = MapNode(SaveParameters(exp_info=exp_info),
                         "in_file", "saveparams")

    # Report on the results of the model
    # Note: see below for a conditional iterfield
    modelreport = MapNode(ModelReport(),
                          ["timeseries", "sigmasquareds_file",
                           "tsnr_file", "r2_files"],
                          "modelreport")

    # Define the workflow outputs
    outputnode = Node(IdentityInterface(["results",
                                         "copes",
                                         "varcopes",
                                         "zstats",
                                         "r2_files",
                                         "ss_files",
                                         "tsnr_file",
                                         "report",
                                         "design_mat",
                                         "contrast_mat",
                                         "design_pkl",
                                         "design_report",
                                         "json_file"]),
                      "outputs")

    # Define the workflow and connect the nodes
    model = Workflow(name=name)
    model.connect([
        (inputnode, modelsetup,
            [("realign_file", "realign_file"),
             ("artifact_file", "artifact_file"),
             ("timeseries", "timeseries")]),
        (inputnode, modelestimate,
            [("timeseries", "in_file")]),
        (inputnode, saveparams,
            [("timeseries", "in_file")]),
        (modelsetup, modelestimate,
            [("design_matrix_file", "design_file")]),
        (modelestimate, contrastestimate,
            [("dof_file", "dof_file"),
             ("corrections", "corrections"),
             ("param_estimates", "param_estimates"),
             ("sigmasquareds", "sigmasquareds")]),
        (modelsetup, contrastestimate,
            [("contrast_file", "tcon_file")]),
#.........这里部分代码省略.........
开发者ID:boydmeredith,项目名称:lyman,代码行数:103,代码来源:model.py


注:本文中的nipype.MapNode.plugin_args方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。