本文整理汇总了Python中netCDF4.Dataset.platform方法的典型用法代码示例。如果您正苦于以下问题:Python Dataset.platform方法的具体用法?Python Dataset.platform怎么用?Python Dataset.platform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类netCDF4.Dataset
的用法示例。
在下文中一共展示了Dataset.platform方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_bad_platform_variables
# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import platform [as 别名]
def test_bad_platform_variables(self):
'''
Tests that the platform variable attributes check is working
'''
# Create an empty dataset that writes to /dev/null This acts as a
# temporary netCDF file in-memory that never gets written to disk.
nc_obj = Dataset(os.devnull, 'w', diskless=True)
self.addCleanup(nc_obj.close)
# The dataset needs at least one variable to check that it's missing
# all the required attributes.
nc_obj.createDimension('time', 1)
nc_obj.platform = 'platform'
# global attribute 'platform' points to variable that does not exist in dataset
results = self.ioos.check_platform_variables(nc_obj)
for result in results:
self.assert_result_is_bad(result)
示例2: dir
# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import platform [as 别名]
if opt[0]=="-o":
overwrite=1
if opt[0]=="-g":
doget=1
if overwrite and doget:
print "Unable overwrite the file while getting it"
print "Make a better selection of command line options"
sys.exit(1)
# If we must overwrite the reference file, we need to
# create it, first, otherwise, just open it for reading
refname="reference.cdf"
if overwrite:
nc=Dataset(refname,"w")
nc.version=sys.version
nc.platform=sys.platform
if 'byteorder' in dir(sys):
nc.byteorder=sys.byteorder
else:
nc.byteorder="Unknown, Python older than 2.0??"
else:
# If there is no local copy of the file, get it from
# its URL
if os.access(refname,os.F_OK)==0 or doget:
thedir="http://starship.python.net/crew/jsaenz/pyclimate/"
thedir=thedir+"references/"
theurl=thedir+pyclimate.tools.pyclimateversion()+"/"+refname
print "There is no local copy of:",refname
print "Do you want me to get it from"
print theurl,"?[no]/yes"
print "Warning: It is about 1.6 Mb"
示例3: len
# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import platform [as 别名]
conusmask[:] = conusmask_ccpa
thrnumv[:] = xc[:]
thrvalv[:] = thresh[:]
rootgrp.latcorners = [lats_anal[0,0], lats_anal[0,-1], lats_anal[-1,0], lats_anal[-1,-1]]
rootgrp.loncorners = [lons_anal[0,0], lons_anal[0,-1], lons_anal[-1,0], lons_anal[-1,-1]]
rootgrp.stream = "s4" # ????
rootgrp.title = "Reforecast V2 accum. ensemble-mean precip forecast and analyzed CDF + rank correlation"
rootgrp.Conventions = "CF-1.0" # ????
rootgrp.history = "Revised Mar 2016 by Hamill"
rootgrp.institution = \
"Reforecast from ERSL/PSD using NCEP/EMC GEFS, circa 2012"
rootgrp.platform = "Model"
rootgrp.references = "http://www.esrl.noaa.gov/psd/forecasts/reforecast2/"
# ---- open ensemble data file for each year, read in data, and augment cdf
# information for that year if the sample is within the month of interest
# or the neighboring month
rankcorr_fa = -99.99*np.ones((nja,nia),dtype=np.float)
nyears = len(range(2002,2016))
print 'nsamps = ',92*nyears
precipa = np.zeros((nja,nia),dtype=np.float)
precipf3d = np.zeros((92*nyears,njf,nif),dtype=np.float)
precipa3d = np.zeros((92*nyears,nja,nia),dtype=np.float)
ipktr = 0
infilename = input_data_directory+'/refcstv2_precip_ccpav3_'+\
示例4: Table
# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import platform [as 别名]
fid.institution = ["National Snow and Ice Data Center\n",
"Cooperative Institute for Research in Environmental Sciences\n",
"University of Colorado at Boulder\n",
"Boulder, CO"]
fid.publisher = ["National Snow and Ice Data Center\n",
"Cooperative Institute for Research in Environmental Sciences\n",
"University of Colorado at Boulder\n",
"Boulder, CO"]
fid.publisher_url = "http://nsidc.org/charis"
fid.publisher_email = "[email protected]"
fid.project = "CHARIS"
fid.standard_name_vocabulary = "CF Standard Name Table (v27, 28 September 2013)"
fid.cdm_data_type = "grid"
fid.keywords = "EARTH SCIENCE > SPECTRAL/ENGINEERING > MICROWAVE > BRIGHTNESS TEMPERATURE"
fid.keywords_vocabulary = "NASA Global Change Master Directory (GCMD) Earth Science Keywords, Version 8.1"
fid.platform = "TBD"
fid.sensor = "TBD"
fid.naming_authority = "org.doi.dx"
fid.id = "10.5067/MEASURES/CRYOSPHERE/nsidc-0630.001"
fid.date_created = "TBD"
fid.acknowledgement = ["This data set was created with funding from NASA MEaSUREs Grant #NNX13AI23A.\n",
"Data archiving and distribution is supported by the NASA NSIDC Distributed Active Archive Center (DAAC)."]
fid.license = "No constraints on data access or use"
fid.processing_level = "Level 3"
fid.creator_name = "Mary J. Brodzik"
fid.creator_email = "[email protected]"
fid.creator_url = "http://nsidc.org/charis"
fid.contributor_name = "T. H. Painter, M. J. Brodzik, R. L. Armstrong"
fid.contributor_role = "Principal Investigator, Co-Investigator, Co-Investigator"
fid.citation = ["Brodzik, M. J., D. G. Long, M. A. Hardman, A. C. Paget. 2015.\n",
"MEaSUREs Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature ESDR.\n",