当前位置: 首页>>代码示例>>Python>>正文


Python Dataset.description方法代码示例

本文整理汇总了Python中netCDF4.Dataset.description方法的典型用法代码示例。如果您正苦于以下问题:Python Dataset.description方法的具体用法?Python Dataset.description怎么用?Python Dataset.description使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在netCDF4.Dataset的用法示例。


在下文中一共展示了Dataset.description方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: netcdfSIC

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def netcdfSIC(lats,lons,var):
    directory = '/home/zlabe/Surtsey/seaice_obs/sic/'
    name = 'nsidc_regrid_sic_19932015.nc'
    filename = directory + name
    ncfile = Dataset(filename,'w',format='NETCDF4')
    ncfile.description = 'Sea Ice Concentrations from Nimbus-7 SMMR and' \
                         'DMSP SSM/I-SSMIS Passive Microwave Data,' \
                         'Version 1 -- files regridded with EASE25'
    
    ### Dimensions
    ncfile.createDimension('years',var.shape[0])
    ncfile.createDimension('months',var.shape[1])
    ncfile.createDimension('lat',var.shape[2])
    ncfile.createDimension('lon',var.shape[3])
    
    ### Variables
    years = ncfile.createVariable('years','f4',('years'))
    months = ncfile.createVariable('months','f4',('months'))
    latitude = ncfile.createVariable('lat','f4',('lat','lat'))
    longitude = ncfile.createVariable('lon','f4',('lon','lon'))
    varns = ncfile.createVariable('sic','f4',('years','months','lat','lon'))
    
    ### Units
    varns.units = 'fraction (%)'
    
    ### Data
    years[:] = list(xrange(var.shape[0]))
    months[:] = list(xrange(var.shape[1]))
    latitude[:] = lats
    longitude[:] = lons
    varns[:] = var
    
    ncfile.close()
    print 'Completed: Created netCDF4 File!'
开发者ID:zmlabe,项目名称:SeaIceThickness,代码行数:36,代码来源:calc_SicRegrid.py

示例2: netcdfPiomas

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def netcdfPiomas(lats,lons,var,directory):
    name = 'piomas_regrid_March_19792015.nc'
    filename = directory + name
    ncfile = Dataset(filename,'w',format='NETCDF4')
    ncfile.description = 'PIOMAS Sea ice thickness reanalysis from 1979-2015 ' \
                        'interpolated on a 180x180 grid (latxlon)' \
                        'of NSIDC EASE100' 
    
    ### Dimensions
    ncfile.createDimension('years',var.shape[0])
    ncfile.createDimension('lat',var.shape[1])
    ncfile.createDimension('lon',var.shape[2])
    
    ### Variables
    years = ncfile.createVariable('years','f4',('years'))
    latitude = ncfile.createVariable('lat','f4',('lat','lat'))
    longitude = ncfile.createVariable('lon','f4',('lon','lon'))
    varns = ncfile.createVariable('thick','f4',('years','lat','lon'))
    
    ### Metrics
    varns.units = 'meters'
    ncfile.title = 'PIOMAS March SIT'
    ncfile.instituion = 'Dept. ESS at University of California, Irvine'
    ncfile.source = 'University of Washington'
    ncfile.references = '[Zhang and Rothrock, 2003]'
    
    ### Data
    years[:] = list(xrange(var.shape[0]))
    latitude[:] = lats
    longitude[:] = lons
    varns[:] = var
    
    ncfile.close()
    print 'Completed: Created netCDF4 File!'
开发者ID:zmlabe,项目名称:SeaIceThickness,代码行数:36,代码来源:calc_MarchSIT_timeseries.py

示例3: netcdfPiomas

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def netcdfPiomas(lats,lons,var,directory):
    name = 'OceanFlux/piomas_regrid_oflux_19792004.nc'
    filename = directory + name
    ncfile = Dataset(filename,'w',format='NETCDF4')
    ncfile.description = 'PIOMAS ocean heat flux reanalysis from 1979-2004 ' \
                        'interpolated on a 180x180 grid (latxlon)' \
                        'of NSIDC EASE100' 
    
    ### Dimensions
    ncfile.createDimension('years',var.shape[0])
    ncfile.createDimension('months',var.shape[1])
    ncfile.createDimension('lat',var.shape[2])
    ncfile.createDimension('lon',var.shape[3])
    
    ### Variables
    years = ncfile.createVariable('years','f4',('years'))
    months = ncfile.createVariable('months','f4',('months'))
    latitude = ncfile.createVariable('lat','f4',('lat','lat'))
    longitude = ncfile.createVariable('lon','f4',('lon','lon'))
    varns = ncfile.createVariable('oflux','f4',('years','months','lat','lon'))
    
    ### Units
    varns.units = 'meters of ice per second (m/s)'
    
    ### Data
    years[:] = list(xrange(var.shape[0]))
    months[:] = list(xrange(var.shape[1]))
    latitude[:] = lats
    longitude[:] = lons
    varns[:] = var
    
    ncfile.close()
    print 'Completed: Created netCDF4 File!'
开发者ID:zmlabe,项目名称:SeaIceThickness,代码行数:35,代码来源:calc_PiomasRegrid.py

示例4: netcdfSIT

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def netcdfSIT(lats,lons,var):
    directory = '/home/zlabe/Surtsey/seaice_obs/Thk/March/'
    name = 'icesatG_regrid_March_20032008.nc'
    filename = directory + name
    ncfile = Dataset(filename,'w',format='NETCDF4')
    ncfile.description = 'Sea ice thickness processed by NASA-G and now' \
                         'regridded on an EASE2.0 100 km grid for the' \
                         'period of March 2003-2008'
    
    ### Dimensions
    ncfile.createDimension('years',var.shape[0])
    ncfile.createDimension('lat',var.shape[1])
    ncfile.createDimension('lon',var.shape[2])
    
    ### Variables
    years = ncfile.createVariable('years','f4',('years'))
    latitude = ncfile.createVariable('lat','f4',('lat','lat'))
    longitude = ncfile.createVariable('lon','f4',('lon','lon'))
    varns = ncfile.createVariable('sit','f4',('years','lat','lon'))
    
    ### Units
    varns.units = 'meters'
    ncfile.title = 'ICESat-G'
    ncfile.instituion = 'Dept. ESS at University of California, Irvine'
    ncfile.source = 'NASA-G'
    ncfile.references = 'Donghui Yi, H. Zwally'
    
    ### Data
    years[:] = list(xrange(var.shape[0]))
    latitude[:] = lats
    longitude[:] = lons
    varns[:] = var
    
    ncfile.close()
    print 'Completed: Created netCDF4 File!'
开发者ID:zmlabe,项目名称:SeaIceThickness,代码行数:37,代码来源:calc_IcesatG.py

示例5: write_netcdf

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def write_netcdf(PCTLS, lons, lats, out_file):
    print 'Writing netcdf file'
    DS =  Dataset(out_file, 'w', format='NETCDF3_64BIT')
    DS.description = '''
        At each livneh gridpoint in the Western United States
        (BBOX: : -125, 31, -102, 49.1) the 5th percentile of tmin
        is computed. The base period used was 1951 - 2005
        '''
    #Define the dimensions
    nlons = lons.shape[0] #number of stations
    nlats = lats.shape[0]
    DS.createDimension('latitude', nlats)
    DS.createDimension('longitude', nlons)

    #Define the variables
    '''
    lat = DS.createVariable('lat', 'f4', ('latitude',), fill_value=-9999)
    lon = DS.createVariable('lon', 'f4', ('longitude',), fill_value=-9999)
    pctl = DS.createVariable('percentile', 'i4', ('latitude', 'longitude'), fill_value=-9999)
    pctl.units = 'Deg Celsius'
    '''
    lat = DS.createVariable('lat', 'f4', ('latitude',))
    lon = DS.createVariable('lon', 'f4', ('longitude',))
    pctl = DS.createVariable('percentile', 'i4', ('latitude', 'longitude'))
    pctl.units = 'Deg Celsius'

    #Populate variable
    lat[:] = lats
    lon[:] = lons
    pctl[:,:] = PCTLS
    DS.close()
开发者ID:bdaudert,项目名称:SANDBOX,代码行数:33,代码来源:masking_test.py

示例6: max

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def max(time_0,x,y,n,set_point):# n is the periods in a day.
    nc=Dataset('/Users/Bora/Desktop/REU/Bond/DDCode/03.nc','r')
    for i in nc.variables:
            print ([i,nc.variables[i].units,nc.variables[i].shape])
    long = np.array(nc.variables['longitude'][:],dtype=np.float32) #Defining the variables in the netcdf file and assigning them 
    lats = np.array(nc.variables ['latitude'][:],dtype=np.float32)
    time = np.array(nc.variables ['time'][:],dtype=np.float32)

    x_new=((x%time_0)*(n*365)) #Finding the number of years from the base data (which is from 1996-2015)
    y_new=((y%time_0)*(n*365))
    number_of_years=y-x
    time_period=time[x_new:y_new] # Creating an array with the time period specified
    temperature = np.array(nc.variables['temp'][x_new:y_new][:][:],dtype=np.float32)
    
    temperature_new= np.empty((len(time_period)/n, len(lats),len(long)), dtype=np.float32)
    for i in range(len(temperature_new)):   
        temperature_new[i]= np.max(temperature[(i*n):((i+1)*n)],axis=0)
    temperature_max=np.empty((365,len(lats),len(long)), dtype=np.float32)
    for i in range(365):
        for j in range(number_of_years):
            temperature_max[i]= temperature_new[i+365*j]+temperature_max[i]
    temperature_max=temperature_max/number_of_years
    temperature_max = np.subtract(temperature_max,(273.16+set_point))
    
    time_for_max=np.arange(1,366,1)
    nc.close()
    
    data4max= Dataset('/Users/Bora/Desktop/REU/Bond/DDCode/max_'+str(set_point)+'.nc', 'w', format='NETCDF4')
    data4max.close()
    
    data4max= Dataset('/Users/Bora/Desktop/REU/Bond/DDCode/max_'+str(set_point)+'.nc', 'a')
    
    time= data4max.createDimension('time', None)
    lat= data4max.createDimension('lat', 241)
    lon= data4max.createDimension('lon', 480)
    
    times= data4max.createVariable('time','f4',('time',))
    latitudes= data4max.createVariable('latitude','f4',('lat',))
    longitudes=data4max.createVariable('longitude','f4',('lon',))
    temp= data4max.createVariable('temp','f4',('time','lat','lon',))
    
    import time
    data4max.description = 'Max Temperature values from 1996-2016 excluding February 29th'
    data4max.source= 'netCDF4 python'
    data4max.history= 'Created' +time.ctime(time.time())
    latitudes.units= 'degrees north'
    longitudes.units= 'degrees east'
    temp.units = 'K'
    times.units = 'days in a gregorian calendar'
    
    latitudes[:]= lats
    longitudes[:]=long
    times[:]= time_for_max
    temp[:]= temperature_max
    data4max.close()
    
    new_data= Dataset('/Users/Bora/Desktop/REU/Bond/DDCode/max_'+str(set_point)+'.nc', 'r')
    for i in new_data.variables:
        print([i,new_data.variables[i].units,new_data.variables[i].shape])
    new_data.close()
开发者ID:FloydGondoli,项目名称:HDD,代码行数:62,代码来源:04_20.py

示例7: fix_netcdf

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def fix_netcdf(infile,outfile):
    """
    Write a new netcdf but this time do the coordinate vars correctly
    """
    rootgrp = Dataset(outfile,'w', format='NETCDF3_64BIT')

    data, targetAttrs = read_netcdf(infile,vars=('Prec','Wind','Tmax','Tmin','time','nav_lat','nav_lon'))
    res = 0.5
    # set dimensions
    lon = rootgrp.createDimension('lon',data['Prec'].shape[2])
    lat = rootgrp.createDimension('lat',data['Prec'].shape[1])
    time = rootgrp.createDimension('time',data['Prec'].shape[0])

    # do vars
    
    times = rootgrp.createVariable('time','f8',('time',))
    times[:] = np.arange(data['Prec'].shape[0])*86400
    times.units = targetAttrs['time']['units']
    times.long_name = targetAttrs['time']['long_name']
    
    lat = rootgrp.createVariable('lat','f8',('lat',))
    lat[:] = np.arange(data['nav_lat'].min(),data['nav_lat'].max()+res,res)
    lat.units = 'degrees_north'
    lat.long_name = 'Latitude'
    
    lon = rootgrp.createVariable('lon','f8',('lon',))
    lon[:] = np.arange(data['nav_lon'].min(),data['nav_lon'].max()+res,res)
    lon.units = 'degrees_east'
    lon.long_name = 'Longitude'
    
    Precip = rootgrp.createVariable('Precip','f8',('time','lat','lon',),fill_value=data['Prec'].fill_value)
    Precip[:,:,:] = data['Prec']
    Precip.units = targetAttrs['Prec']['units']
    Precip.long_name = targetAttrs['Prec']['long_name']
    
    Tmax = rootgrp.createVariable('Tmax','f8',('time','lat','lon',),fill_value=data['Tmax'].fill_value)
    Tmax[:,:,:] = data['Tmax']
    Tmax.units = targetAttrs['Tmax']['units']
    Tmax.long_name = targetAttrs['Tmax']['long_name']

    Tmin = rootgrp.createVariable('Tmin','f8',('time','lat','lon',),fill_value=data['Tmin'].fill_value)
    Tmin[:,:,:] = data['Tmin']
    Tmin.units = targetAttrs['Tmin']['units']
    Tmin.long_name = targetAttrs['Tmin']['long_name']    

    Wind = rootgrp.createVariable('Wind','f8',('time','lat','lon',),fill_value=data['Wind'].fill_value)
    Wind[:,:,:] = data['Wind']
    Wind.units = targetAttrs['Wind']['units']
    Wind.long_name = targetAttrs['Wind']['long_name']
    
    rootgrp.description = 'Global 1/2 Degree Gridded Meteorological VIC Forcing Data Set '
    rootgrp.history = 'Created: {}\n'.format(tm.ctime(tm.time()))
    rootgrp.source = sys.argv[0] # prints the name of script used
    rootgrp.institution = "University of Washington Dept. of Civil and Environmental Engineering"
    rootgrp.sources = "UDel (Willmott and Matsuura 2007), CRU (Mitchell et al., 2004), NCEP/NCAR (Kalnay et al. 1996)"
    rootgrp.projection = "Geographic"
    rootgrp.surfSng_convention = "Traditional"

    rootgrp.close()
开发者ID:orianac,项目名称:tonic,代码行数:61,代码来源:fix_global_forcings.py

示例8: convert_file

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def convert_file(directory, filename, verbose):
    """ Convert a DICOM file to netCDF.
    
    Args:
    directory: the directory where the file is.
    filename: name of DICOM file to convert.
    verbose: true to get printf statements.

    Returns:
    The name of the netCDF file.
    """
    verbose = 1
    if (verbose):
        print('convert_file is converting file ' + filename);

    ds = dicom.read_file(directory + '/' + filename, force=True)
    netcdf_filename = filename + '.nc'
    #pdb.set_trace()
    
    rootgrp = Dataset(netcdf_filename, "w", format="NETCDF4")
    rootgrp.description = "bogus example script"
    for tag_name in ds.dir():
        de = ds.data_element(tag_name)

        VR_exists = True
        print('data element ' + tag_name)        
        try:
            de.VR
        except AttributeError:
            VR_exists = False
        else:
            VR_exists = True

        if tag_name != 'PixelData':
            if VR_exists:
                print('data element ' + tag_name + ' ' + de.VR)
                if de.VR != 'SQ':
                    setattr(rootgrp, tag_name, de.value)
        else:
            print('copying data')
            if (verbose):
                print('creating dimension row with len ' + str(ds.Rows))
            rowdim = rootgrp.createDimension("row", ds.Rows)
            if (verbose):
                print('creating dimension col with len ' + str(ds.Columns)) 
            coldim = rootgrp.createDimension("column", ds.Columns)
            pixel_data = rootgrp.createVariable("pixel_data","i4",("row","column"))
            pixel_data[:] = ds.pixel_array
            

    #dataset.walk(PN_callback)
    rootgrp.close()
    return 'test.nc'
开发者ID:edhartnett,项目名称:dicom2netcdf,代码行数:55,代码来源:dicom2netcdf.py

示例9: prep

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def prep(infile,outfile):
  """
  Function to preprocess FFDAS netCDF files
  Converts from 24 hourly variables to one
  flux variable varying in t dimension
  """
  
  # read in input netCDF file
  datain = Dataset(infile,'r')

  # open output netCDF file
  dataout = Dataset(outfile, "w", format="NETCDF4")

  # get dimensions from input file
  lat1 = datain.variables['latitude'][:]
  lon1 = datain.variables['longitude'][:]

  # get data from input file
  flux = np.zeros((24,len(lat1),len(lon1)))

  # read in each strange hourly variable and concatenate to one array
  for i in range(1,25):
    exec("tmpflux = datain.variables['flux_h%02d'][:]" % i)
    flux[i-1,:,:] = tmpflux

  # set up output file
  timeout = dataout.createDimension("time", None)
  lat2 = dataout.createDimension("latitude", len(lat1))
  lon2 = dataout.createDimension("longitude", len(lon1))
  times = dataout.createVariable("hour", "i2", ("time",))
  latitudes = dataout.createVariable("latitude","f4",("latitude",))
  longitudes = dataout.createVariable("longitude","f4",("longitude",))
  outflux = dataout.createVariable("flux","f8",("time","latitude","longitude" ,))
  timearr = np.arange(1,25,1)

  # add some metadata
  dataout.description = "Converted Hourly FFDAS flux netCDF file"
  dataout.history = "Created " + time.ctime(time.time())
  dataout.source = "convert_ffdas_hrly.py - C. Martin - Univ. of MD - 2/2016"
  latitudes.units = "degrees north"
  longitudes.units = "degrees east"
  outflux.units = "kgC/cell/h"
  times.units = "hour of day" 

  # write to file
  latitudes[:] = lat1
  longitudes[:] = lon1
  times[:] = timearr
  outflux[:] = flux

  # close files
  datain.close()
  dataout.close()
开发者ID:martin2098,项目名称:WRF-CO2,代码行数:55,代码来源:ffdas.py

示例10: writeCMIP5File

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def writeCMIP5File(modelName,scenario,myvarname,lon,lat,time,mydata,mydataanomaly,outfilename):
    
     myformat='NETCDF3_CLASSIC'
     
     if os.path.exists(outfilename):
          os.remove(outfilename)
     print "Results written to netcdf file: %s"%(outfilename)
     if myvarname=="sic": myvar="SIC"
     
     f1 = Dataset(outfilename, mode='w', format=myformat)
     f1.title       = "IPCC AR5 %s"%(myvar)
     f1.description = "IPCC AR5 running averages of %s for model %s for scenario %s"%(myvar,modelName,scenario)
     f1.history     = "Created " + str(datetime.now())
     f1.source      = "Trond Kristiansen ([email protected])"
     f1.type        = "File in NetCDF3 format created using iceExtract.py"
     f1.Conventions = "CF-1.0"

     """Define dimensions"""
     f1.createDimension('x',  len(lon))
     f1.createDimension('y', len(lat))
     f1.createDimension('time', None)
        
     vnc = f1.createVariable('longitude', 'd', ('x',),zlib=False)
     vnc.long_name = 'Longitude'
     vnc.units = 'degree_east'
     vnc.standard_name = 'longitude'
     vnc[:] = lon

     vnc = f1.createVariable('latitude', 'd', ('y',),zlib=False)
     vnc.long_name = 'Latitude'
     vnc.units = 'degree_north'
     vnc.standard_name = 'latitude'
     vnc[:] = lat

     v_time = f1.createVariable('time', 'd', ('time',),zlib=False)
     v_time.long_name = 'Years'
     v_time.units = 'Years'
     v_time.field = 'time, scalar, series'
     v_time[:]=time     
     
     v_temp=f1.createVariable('SIC', 'd', ('time', 'y', 'x',),zlib=False)
     v_temp.long_name = "Sea-ice area fraction (%)"
     v_temp.units = "%"
     v_temp.time = "time"
     v_temp.field="SIC, scalar, series"
     v_temp.missing_value = 1e20
     
    
     if myvarname=='sic':
          f1.variables['SIC'][:,:,:]  = mydata
          
     f1.close()
开发者ID:trondkr,项目名称:OceanLight,代码行数:54,代码来源:IOwrite.py

示例11: write_orb

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
    def write_orb(self, **kwargs):
        '''Write swath location in Satellite grid file sgridfile.\n
        Dimensions are  x_al (along track distance), x_ac (across
        track distance) and cycle (1). \n
        Variables are longitude, latitude, number of days in a cycle,
        distance crossed in a cycle, time, along track and across track
        distances are stored.'''
## - Open Netcdf file in write mode
        if netcdf4: 
          fid = Dataset(self.file, 'w', format='NETCDF4_CLASSIC') 
        else:  
          fid = Dataset(self.file, 'w' )
        fid.description = "Orbit computed from SWOT simulator"

## - Create dimensions
        #if (not os.path.isfile(self.file)):
        fid.createDimension('time', numpy.shape(self.lon)[0])
        fid.createDimension('cycle', 1)

## - Create and write Variables
        vtime = fid.createVariable('time', 'f', ('time',))
        vlon = fid.createVariable('lon', 'f4', ('time',))
        vlat = fid.createVariable('lat', 'f4', ('time',))
        vcycle = fid.createVariable('cycle', 'f4', ('cycle',))
        valcycle = fid.createVariable('al_cycle', 'f4', ('cycle',))
        vtimeshift = fid.createVariable('timeshift', 'f4', ('cycle',))
        vx_al = fid.createVariable('x_al', 'f4', ('time',))
        vtime[:]=self.time
        vtime.units="days"
        vlon[:]=self.lon
        vlon.units="deg"
        vlat[:]=self.lat
        vlat.units="deg"
        vcycle[:]=self.cycle
        vcycle.units="days"
        vcycle.long_name="Number of days during a cycle"
        valcycle[:]=self.al_cycle
        valcycle.units="km"
        valcycle.long_name=" Distance travelled during the pass"
        vtimeshift[:]=self.timeshift
        vtimeshift.units="km"
        vtimeshift.long_name="Shift time to match model time"
        vx_al[:]=self.x_al
        vx_al.units="km"
        vx_al.long_name="Along track distance from the beginning of the pass"
        fid.close()
        return None
开发者ID:jinbow,项目名称:swotsimulator,代码行数:49,代码来源:rw_data.py

示例12: write_netcdf

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def write_netcdf(INDICES, var_name, model, rcp, year, lons, lats, doys, out_dir):
    print 'Writing netcdf file'
    out_file = out_dir + var_name + '_' + rcp + '_5th_Indices_WUSA_' + str(year) + '.nc'
    DS = Dataset(out_file, 'w', format='NETCDF3_64BIT')
    DS.description = '''
           At each livneh gridpoint in the Western United States
           (BBOX: : -125, 31, -102, 49.1) for each DOY in Winter season(DJF),
           the number degrees below the 5th percentile at that point are recorded
           '''

    #Define the dimensions
    nlons = lons.shape[0]
    nlats = lats.shape[0]
    ndays = doys.shape[0]
    DS.createDimension('latitude', nlats)
    DS.createDimension('longitude', nlons)
    DS.createDimension('day_in_season', ndays)

    #Define the variables
    '''
    lat = DS.createVariable('lat', 'f4', ('latitude',), fill_value=1e20)
    lon = DS.createVariable('lon', 'f4', ('longitude',), fill_value=1e20)
    # FIX ME: save doys as ints
    # OverflowError: Python int too large to convert to C long
    doy = DS.createVariable('doy', 'f4', ('day_in_season',), fill_value=1e20)
    ind = DS.createVariable('index', 'i4', ('day_in_season', 'latitude', 'longitude'), fill_value=1e20)
    ind.units = 'DegC below 5th precentile'
    '''
    lat = DS.createVariable('lat', 'f4', ('latitude',))
    lon = DS.createVariable('lon', 'f4', ('longitude',))
    # FIX ME: save doys as ints
    # OverflowError: Python int too large to convert to C long
    doy = DS.createVariable('doy', 'f4', ('day_in_season',))
    ind = DS.createVariable('index', 'i4', ('day_in_season', 'latitude', 'longitude'))
    ind.units = 'DegC below 5th precentile'


    #Populate variable
    lat[:] = lats
    lon[:] = lons
    doy[:] = doys
    ind[:,:,:] = INDICES
    DS.close()
开发者ID:bdaudert,项目名称:SANDBOX,代码行数:45,代码来源:get_LOCA_indices.py

示例13: CreateNCDF

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def CreateNCDF(fname, xcoords, ycoords, tcoords):
    """create a netcdf data file given x,y,t coordinates"""
    rootgrp = Dataset(fname, 'w', format=NETCDF_FORMAT)
    rootgrp.description = 'Urban Phenology Data'

    x = rootgrp.createDimension('x', len(xcoords))
    xcoord = rootgrp.createVariable('xcoord','i4',('x',))
    xcoord[:] = xcoords
    xcoord.units = 'meters east utm'

    y = rootgrp.createDimension('y', len(ycoords))
    ycoord = rootgrp.createVariable('ycoord','i4',('y',))
    ycoord[:] = ycoords
    ycoord.units = 'meters north utm'

    t = rootgrp.createDimension('t', None)
    times = rootgrp.createVariable('tcoord','i4',('t',))
    times[:] = tcoords
    times.units = '[YYYY][DayOfYear]'
    print rootgrp
    return rootgrp
开发者ID:GregoryCMiller,项目名称:urbanphenology,代码行数:23,代码来源:create_nc.py

示例14: netcdfSIT

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def netcdfSIT(lats,lons,var,varmean):
    directory = '/home/zlabe/Surtsey/seaice_obs/Thk/March/'
    name = 'sub_regrid_March_19861994.nc'
    filename = directory + name
    ncfile = Dataset(filename,'w',format='NETCDF4')
    ncfile.description = 'Sea ice thickness processed by submarine' \
                         'data although record is spotty throughout' \
                         '1986-1994 reference period. Mean thickness' \
                         'over the period is also included.'
    
    ### Dimensions
    ncfile.createDimension('years',var.shape[0])
    ncfile.createDimension('lat',var.shape[1])
    ncfile.createDimension('lon',var.shape[2])
    
    ### Variables
    years = ncfile.createVariable('years','f4',('years'))
    latitude = ncfile.createVariable('lat','f4',('lat','lat'))
    longitude = ncfile.createVariable('lon','f4',('lon','lon'))
    varns = ncfile.createVariable('sit','f4',('years','lat','lon'))
    varnsmean = ncfile.createVariable('meansit','f4',('lat','lon'))
    
    ### Units
    varns.units = 'meters'
    varnsmean.units = 'meters'
    ncfile.title = 'Submarine Data'
    ncfile.instituion = 'Dept. ESS at University of California, Irvine'
    ncfile.source = 'NSIDC, J. Maslanik & A.P. Barrett'
    ncfile.created_by = 'Zachary Labe ([email protected])'
#    ncfile.references = ''
    
    ### Data
    years[:] = list(xrange(var.shape[0]))
    latitude[:] = lats
    longitude[:] = lons
    varns[:] = var
    varnsmean[:] = varmean
    
    ncfile.close()
    print 'Completed: Created netCDF4 File!'
开发者ID:zmlabe,项目名称:SeaIceThickness,代码行数:42,代码来源:calc_Submarine.py

示例15: write_ll_file

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import description [as 别名]
def write_ll_file(netfile, outfile):
    ds = Dataset(netfile, 'r')
    lons = ds.variables['lon'][:]
    lats = ds.variables['lat'][:]

    print 'Writing netcdf file'
    DS = Dataset(outfile, 'w', format='NETCDF3_64BIT')
    DS.description = '''LOCA latitudes and longitudes'''

    #Define the dimensions
    nlons = lons.shape[0]
    nlats = lats.shape[0]
    DS.createDimension('latitude', nlats)
    DS.createDimension('longitude', nlons)

    #Define the variables
    lat = DS.createVariable('lat', 'f4', ('latitude',), fill_value=1e20)
    lon = DS.createVariable('lon', 'f4', ('longitude',), fill_value=1e20)
    #Populate variable
    lat[:] = lats
    lon[:] = lons
    DS.close()
开发者ID:bdaudert,项目名称:SANDBOX,代码行数:24,代码来源:check_net.py


注:本文中的netCDF4.Dataset.description方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。