当前位置: 首页>>代码示例>>Python>>正文


Python Dataset.createDimension方法代码示例

本文整理汇总了Python中netCDF4.Dataset.createDimension方法的典型用法代码示例。如果您正苦于以下问题:Python Dataset.createDimension方法的具体用法?Python Dataset.createDimension怎么用?Python Dataset.createDimension使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在netCDF4.Dataset的用法示例。


在下文中一共展示了Dataset.createDimension方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _generate_mask_of_domain_of_interest

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
def _generate_mask_of_domain_of_interest( x_indices, y_indices):
    path = "mask_of_quebec_basins_on_amno_ps_grid.nc"
    ds = Dataset(path, mode = "w")


    the_shape = polar_stereographic.lons.shape

    mask = np.zeros(the_shape, dtype=int)
    mask[x_indices, y_indices] = 1


    ds.createDimension("lon", the_shape[0])
    ds.createDimension("lat", the_shape[1])

    maskVar = ds.createVariable("mask", "b", dimensions=("lon", "lat"))


    lonVar = ds.createVariable("lon", "f4", dimensions=("lon", "lat"))
    latVar = ds.createVariable("lat", "f4", dimensions=("lon", "lat"))


    maskVar[:] = mask[:]
    lonVar[:] = polar_stereographic.lons
    latVar[:] = polar_stereographic.lats

    ds.close()
    pass
开发者ID:guziy,项目名称:PlotWatrouteData,代码行数:29,代码来源:plot_projected_changes.py

示例2: create_netcdf

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
 def create_netcdf(self):
     #I'm going to name the output grid's
     #netcdf file after the first file in the grid
     #and add the total filelist as an attribute
     
     newfilename = (self.filelist[0]).strip("'")
     newfilename = newfilename.strip(".loa")
     newfilename += ("_grid.nc")
     if (len(self.filelist) > 8):
         newfilename = "large_grid.nc"
     
     newfile = Dataset(newfilename, mode='w', clobber=True)
     newfile.createDimension('naxes0', self.naxes0)
     newfile.createDimension('naxes1', self.naxes1)
     newfile.createDimension('naxes2', self.naxes2)
     
     var = newfile.createVariable('otfmap', numpy.dtype(numpy.float32), (('naxes2', 'naxes1', 'naxes0')))
     
     var[:] = self.T
     
     var.__setattr__('filenames', self.filelist)
     var.__setattr__('xmax', self.xmax)
     var.__setattr__('ymax', self.ymax)
     var.__setattr__('xmin', self.xmin)
     var.__setattr__('ymin', self.ymin)
     
     newfile.close()
开发者ID:tkareta,项目名称:otfregrid,代码行数:29,代码来源:OTFRegrid_minimal.py

示例3: output_file

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
def output_file(fname, varname, dat, lat_variable = None, lon_variable = None):
    if len(dat.shape) == 2: dat = np.reshape(dat, [1, dat.shape[0], dat.shape[1]])
    if lat_variable is None: lat_variable = coor_range(-90 , 90 , dat.shape[1])
    if lon_variable is None: lon_variable = coor_range(0, 360, dat.shape[2])

    rootgrp = Dataset(fname, "w", format="NETCDF4")

    time = rootgrp.createDimension("time", dat.shape[0])
    lat  = rootgrp.createDimension("lat", dat.shape[1])
    lon  = rootgrp.createDimension("lon", dat.shape[2])

    times      = rootgrp.createVariable("time","f8",("time",))
    latitudes  = rootgrp.createVariable("lat","f4",("lat",))
    longitudes = rootgrp.createVariable("lon","f4",("lon",))

    longitudes.lon_name         = 'Longitude'
    longitudes.axis             = "X"
    longitudes.standard_name    = "longitude"
    longitudes.units            = "degrees_east"

    latitudes.lon_name          = 'Latitude'
    latitudes.axis              = "Y"
    latitudes.standard_name     = "latitude"
    latitudes.units             = "degrees_north"

    dims = ("time","lat","lon",)
    var = rootgrp.createVariable(varname, "f4", dims)

    latitudes [:] = lat_variable
    longitudes[:] = lon_variable
    var[:,:,:]    = dat
    
    rootgrp.close()

    return dat
开发者ID:douglask3,项目名称:jules_inputs,代码行数:37,代码来源:jules_file_man.py

示例4: save_alts_to_netcdf_file

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
def save_alts_to_netcdf_file(path="alt.nc",
                             data_path = "/home/huziy/skynet1_rech3/cordex/CORDEX_DIAG/NorthAmerica_0.44deg_MPI_B1",
                             year_range=None, coord_file=None):

    year_range = range(1950, 2101) if year_range is None else year_range
    ds = Dataset(path, mode="w", format="NETCDF3_CLASSIC")

    if coord_file is None:
        coord_file = os.path.join(data_path, "pmNorthAmerica_0.44deg_MPIHisto_B1_200009_moyenne")

    b, lons2d, lats2d = draw_regions.get_basemap_and_coords(file_path=coord_file)
    ds.createDimension('year', len(year_range))
    ds.createDimension('lon', lons2d.shape[0])
    ds.createDimension('lat', lons2d.shape[1])

    lon_variable = ds.createVariable('longitude', 'f4', ('lon', 'lat'))
    lat_variable = ds.createVariable('latitude', 'f4', ('lon', 'lat'))
    year_variable = ds.createVariable("year", "i4", ("year",))

    alt_variable = ds.createVariable("alt", "f4", ('year', 'lon', 'lat'))

    lon_variable[:, :] = lons2d[:, :]
    lat_variable[:, :] = lats2d[:, :]
    year_variable[:] = year_range

    dm = CRCMDataManager(data_folder=data_path)
    dm_list = len(year_range) * [dm]
    mean_types = len(year_range) * ["monthly"]
    pool = Pool(processes=6)
    alts = pool.map(get_alt_for_year, list(zip(year_range, dm_list, mean_types)))
    alts = np.array(alts)
    alt_variable[:, :, :] = alts[:, :, :]
    ds.close()
开发者ID:guziy,项目名称:RPN,代码行数:35,代码来源:active_layer_thickness.py

示例5: wind_data

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
def wind_data(file_name, mode='netCDF'):
    
    #every fifteen minutes maybe not necessary
    frequency = 1/900
    series_length = 1440
    time = unit_conversion.generate_ms(1404647999870, series_length, frequency)
    wind_direction = get_rand_circular_data(series_length, 15, 360)
    wind_speed = get_rand_discrete_data(series_length, 2, 5, 0)
    
    if mode == 'netCDF':
        ds = Dataset(file_name, 'w', format="NETCDF4_CLASSIC")
        ds.createDimension('time',len(time))
        time_var = ds.createVariable('time','f8',('time'))
        time_var[:] = time
        wind_speed_var = ds.createVariable('wind_speed','f8',('time'))
        wind_speed_var[:] = wind_speed
        wind_direction_var = ds.createVariable('wind_direction','f8',('time'))
        wind_direction_var[:] = wind_direction
        ds.close()
    else:
        excelFile = pd.DataFrame({'Time': time, 
                                  'Wind Speed in m/s': wind_speed,
                                  'Wind Direction in degrees': wind_direction,
                                  })
        
        excelFile.to_csv(path_or_buf= file_name)
        
    
    print('total:', len(time), len(wind_direction), len(wind_speed))
开发者ID:cmazzullo,项目名称:wave-sensor,代码行数:31,代码来源:dataset_generator.py

示例6: construct_prtm

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
def construct_prtm(
      gg,
      x_0,
      out_f,
      ):
   shape = ( len(x_0[0][1]), len(x_0[1][1]) )

   # open files
   old_prtm = Dataset(gg+"prtm.nc", 'r')
   new_path = out_f['simulated_inputs'] + param_string(x_0) + "/"
   make_sure_path_exists(new_path)
   new_prtm = Dataset(new_path+"simulated.prtm.nc", 'w', format=old_prtm.data_model)

   # create dimensions
   for x in old_prtm.dimensions:
      new_prtm.createDimension( x, len(old_prtm.dimensions[x]) )

   # create variables and write data
   for x in old_prtm.variables:
      new_prtm.createVariable(
            x,
            old_prtm.variables[x].dtype,
            old_prtm.variables[x].dimensions,
            fill_value = -999.0,
            )
      new_prtm.variables[x][:] = old_prtm.variables[x][:]

   # close files
   new_prtm.close()
   old_prtm.close()
开发者ID:gmcgarragh,项目名称:ORAC-tester,代码行数:32,代码来源:main.py

示例7: create_temp_nc

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
def create_temp_nc(filename):
    ''' Creates a temporary NetCDF file to store v between
        tasks.
    '''
    
    # If .nc on end of filename assume from 'filepsplit'
    if filename[-3:] == '.nc' :
        tempdir = filename[:-22]+'monthly_means/temp_files/'
        tempfile = filename[-22:-5]+'.temp.v.nc'
    
    else : # Else from monthly average
        tempdir = filename[:-15]+'monthly_means/temp_files/'
        tempfile = filename[-15:]+'.temp.v.nc'
    

    f = Dataset(tempdir+tempfile,'w')    
    
    # Create dimensions
    z_hybrid_height = f.createDimension('z_hybrid_height',180)
    latitude = f.createDimension('latitude',768)
    longitude = f.createDimension('longitude',1024)
    bound = f.createDimension('bound',2)

    # Create u variable
    u = f.createVariable('v','f4',('z_hybrid_height','latitude',
                                   'longitude',),zlib=True)
    f.close()
开发者ID:MJones810,项目名称:code_from_jasmin,代码行数:29,代码来源:par_mean_v.py

示例8: create_grd

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
def create_grd(grdname,lat,lon,str):
    dimy,dimx,units=setstr(str)
    ff = NF(grdname, 'w', format='NETCDF3_CLASSIC')
    ff.createDimension(dimy, np.size(lat))
    ff.createDimension(dimx, np.size(lon))
        
    ff.createVariable(dimy, 'd',(dimy, ) ) 
    tmp=ff.variables[dimy]
    if str=='l':        
        setattr(tmp, "long_name", "Latitude")
    elif str=='x': 
        setattr(tmp, "long_name", "y dist")
    setattr(tmp, "units", units)
     
    ff.createVariable(dimx, 'd',(dimx, ) )
    tmp=ff.variables[dimx]
    if str=='l':   
        setattr(tmp, "long_name", "Longitude")
    elif str=='x':
        setattr(tmp, "long_name", "x dist")
    setattr(tmp, "units", units) 
    
    ff.createVariable('D', 'd',(dimy,dimx, ) )
    tmp=ff.variables['D']
    setattr(tmp, "long_name", "Depth")
    setattr(tmp, "units", "meter")
    
    ff.close()
开发者ID:poidl,项目名称:article_gib1,代码行数:30,代码来源:mod_data.py

示例9: write_file

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
def write_file(td, filename='/home/shiraiwa/test.nc', 
               ignore_changes=False, format = 'NETCDF3_CLASSIC'):
    import numpy as np
    nm = td.getvar0()
    dtype2str = {np.dtype('float64'):  'f8',
                 np.dtype('float32'):  'f4',
                 np.dtype('int64'): 'i8',
                 np.dtype('int32'): 'i4', 
                 np.dtype('int16'): 'i2',
                 np.dtype('int8'):  'i1',
                 np.dtype('uint64'): 'u8',
                 np.dtype('uint32'): 'u4',
                 np.dtype('uint16'): 'u2', 
                 np.dtype('uint8'):  'u1', 
                 np.dtype('S1'):  'S1', }

    rootgrp = Dataset(filename, 'w', format=format)
    for key in nm.var:    
        setattr(rootgrp, key, nm.var[key])
    for key in nm['dimensions'].var:
        rootgrp.createDimension(key, nm['dimensions'].var[key])
    for key in nm["variables"]:
       dim = nm["variables"][key].var['dimensions']
       datatype = dtype2str[nm["variables"][key].var['dtype']]
       variable = rootgrp.createVariable(key,datatype,dim)
       for attr in  nm["variables"][key].var:
           if not attr in ["dimensions", "dtype", "ndim", "shape"]:
                setattr(variable, attr, nm["variables"][key].var[attr])
       if ignore_changes or not nm["variables"][key]._data_loaded:
           variable[:] = nm["variables"][key].nc_eval(td)
       else:
           variable[:] = nm["variables"][key]._data

    rootgrp.close() 
    print('write NC file completed. ' + filename)       
开发者ID:piScope,项目名称:piScope,代码行数:37,代码来源:netcdf4.py

示例10: test_variable_units

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
    def test_variable_units(self):
        '''
        Tests that the variable units test is working
        '''

        # this check tests that units attribute is present on EVERY variable

        # Create an empty dataset that writes to /dev/null This acts as a
        # temporary netCDF file in-memory that never gets written to disk.
        nc_obj = Dataset(os.devnull, 'w', diskless=True)
        self.addCleanup(nc_obj.close)

        # The dataset needs at least one variable to check that it's missing
        # all the required attributes.
        nc_obj.createDimension('time', 1)
        nc_obj.createVariable('sample_var', 'd', ('time',))

        sample_var = nc_obj.variables['sample_var']

        results = self.ioos.check_variable_units(nc_obj)
        self.assert_result_is_bad(results)

        sample_var.units = 'm'
        sample_var.short_name = 'sample_var'

        results = self.ioos.check_variable_units(nc_obj)
        self.assert_result_is_good(results)
开发者ID:ioos,项目名称:compliance-checker,代码行数:29,代码来源:test_ioos_profile.py

示例11: convertAllDataToNetcdf

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
    def convertAllDataToNetcdf(self, pathToNetCDF='data/swe_ross_brown/swe.nc4'):

        ds = Dataset(pathToNetCDF, mode='w', format='NETCDF4_CLASSIC')

        ds.createDimension('time', len(self.all_dates))
        ds.createDimension('lon', self.lons2d.shape[0])
        ds.createDimension('lat', self.lons2d.shape[1])

        lonVariable = ds.createVariable('longitude', 'f4', ('lon', 'lat'))
        latVariable = ds.createVariable('latitude', 'f4', ('lon', 'lat'))

        sweVariable = ds.createVariable('SWE', 'f4', ('time', 'lon', 'lat'))
        sweVariable.units = 'mm of equivalent water'

        timeVariable = ds.createVariable('time', 'i4', ('time',))
        ncSinceFormat = '%Y-%m-%d %H:%M:%S'
        timeVariable.units = 'hours since ' + self.getStartDate().strftime(ncSinceFormat)

        lonVariable[:] = self.lons2d
        latVariable[:] = self.lats2d

        nDates = len(self.all_dates)
        for i, theDate in enumerate(self.all_dates):
            filePath = os.path.join(self.root_path, theDate.strftime(self.file_name_format) + ".txt")
            data = self._readFromTxtFile(filePath)
            sweVariable[i, :, :] = data[:, :]
            print ' {0} / {1} '.format(i, nDates)

        timeVariable[:] = date2num(self.all_dates, units=timeVariable.units)


        ds.close()
开发者ID:guziy,项目名称:PlotWatrouteData,代码行数:34,代码来源:swe_ross_brown.py

示例12: test_variable_attributes

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
    def test_variable_attributes(self):
        '''
        Tests that the platform variable attributes check is working
        '''

        # Create an empty dataset that writes to /dev/null This acts as a
        # temporary netCDF file in-memory that never gets written to disk.
        nc_obj = Dataset(os.devnull, 'w', diskless=True)
        self.addCleanup(nc_obj.close)

        # The dataset needs at least one variable to check that it's missing
        # all the required attributes.
        nc_obj.createDimension('time', 1)
        nc_obj.createVariable('platform', 'S1', ())

        platform = nc_obj.variables['platform']

        results = self.ioos.check_variable_attributes(nc_obj)
        for result in results:
            self.assert_result_is_bad(result)

        platform.long_name = 'platform'
        platform.short_name = 'platform'
        platform.source = 'glider'
        platform.ioos_name = 'urn:ioos:station:glos:leorgn'
        platform.wmo_id = '1234'
        platform.comment = 'test'

        results = self.ioos.check_variable_attributes(nc_obj)
        for result in results:
            self.assert_result_is_good(result)
开发者ID:ioos,项目名称:compliance-checker,代码行数:33,代码来源:test_ioos_profile.py

示例13: setUp

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
    def setUp(self):
        self.file = file_name
        f = Dataset(file_name,'w')
        f.createDimension('x',None)
        f.createDimension('y',ydim)
        f.createDimension('z',zdim)
        v = f.createVariable('data','i2',('x','y','z'))

        
        v[:] = data

        v1 = f.createVariable('data1','i2','x')
        self.data1 = data1
        self.data = data
        # test __setitem___
        v[0:xdim] = self.data
        # integer array slice.
        v[:,i,:] = -100
        self.data[:,i,:] = -100
        # boolen array slice.
        v[ib2] = -200
        self.data[ib2] = -200
        v[ib3,:,:] = -300
        self.data[ib3,:,:] = -300
        # same as above, for 1d array
        v1[0:xdim] = self.data1
        v1[i] = -100
        self.data1[i] = -100
        v1[ib2] = -200
        self.data1[ib2] = -200
        v1[ib3] = -300
        self.data1[ib3] = -300

        f.close()
开发者ID:hhiester,项目名称:convert2vtk,代码行数:36,代码来源:tst_fancyslicing.py

示例14: writeCDF

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
def writeCDF():
##    fidOut = Dataset( 'aquaQuartBigEurope.nc', 'w', format = \    
    fidOut = Dataset( 'terraQuartBigEurope.nc', 'w', format = \
                      'NETCDF3_CLASSIC')
    fidOut.createDimension( 'y', p.nYOut )
    fidOut.createDimension( 'x', p.nXOut )
    fidOut.createDimension( 't', p.nTimesIn )
##
    fidOut.createVariable( 'lst', np.float32, ( 't', 'y', 'x' ) )
    fidOut.variables[ 'lst'][:] = outputGrid
    fidOut.createVariable( 'n', np.float32, ( 't', 'y', 'x' ) )
    fidOut.variables[ 'n'][:] = outputCount
##
    fidOut.createVariable( 'lstF', np.float32, ( 't', 'y', 'x' ) )
    fidOut.variables[ 'lstF'][:] = forestGrid
    fidOut.createVariable( 'nF', np.float32, ( 't', 'y', 'x' ) )
    fidOut.variables[ 'nF'][:] = forestCount
##
    fidOut.createVariable( 'lstU', np.float32, ( 't', 'y', 'x' ) )
    fidOut.variables[ 'lstU'][:] = urbanGrid
    fidOut.createVariable( 'nU', np.float32, ( 't', 'y', 'x' ) )
    fidOut.variables[ 'nU'][:] = urbanCount
##
    fidOut.createVariable( 'lstC', np.float32, ( 't', 'y', 'x' ) )
    fidOut.variables[ 'lstC'][:] = cropGrid
    fidOut.createVariable( 'nC', np.float32, ( 't', 'y', 'x' ) )
    fidOut.variables[ 'nC'][:] = cropCount
##
    fidOut.createVariable( 'lstO', np.float32, ( 't', 'y', 'x' ) )
    fidOut.variables[ 'lstO'][:] = otherGrid
    fidOut.createVariable( 'nO', np.float32, ( 't', 'y', 'x' ) )
    fidOut.variables[ 'nO'][:] = otherCount
##
    fidOut.close()
开发者ID:lec8rje,项目名称:SWELTER,代码行数:36,代码来源:mkModisEuroDomain.py

示例15: construct_loc

# 需要导入模块: from netCDF4 import Dataset [as 别名]
# 或者: from netCDF4.Dataset import createDimension [as 别名]
def construct_loc(
      gg,
      x_0,
      out_f,
      ):
   shape = ( len(x_0[0][1]), len(x_0[1][1]) )

   # open files
   old_loc = Dataset(gg+"loc.nc", 'r')
   new_path = out_f['simulated_inputs'] + param_string(x_0) + "/"
   make_sure_path_exists(new_path)
   new_loc = Dataset(new_path+"simulated.loc.nc", 'w', format=old_loc.data_model)

   # create dimensions
   new_loc.createDimension("nx_loc", shape[0])
   new_loc.createDimension("ny_loc", shape[1])

   # create variables
   lat = new_loc.createVariable( "lat", "f4", ("ny_loc","nx_loc"), fill_value=-999.0 )
   lon = new_loc.createVariable( "lon", "f4", ("ny_loc","nx_loc"), fill_value=-999.0 )

   # write data
   lat[:] = np.tile( old_loc.variables["lat"][:], shape )
   lon[:] = np.tile( old_loc.variables["lon"][:], shape )

   # close files
   new_loc.close()
   old_loc.close()
开发者ID:gmcgarragh,项目名称:ORAC-tester,代码行数:30,代码来源:main.py


注:本文中的netCDF4.Dataset.createDimension方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。