本文整理汇总了Python中neon.models.Model.serialize方法的典型用法代码示例。如果您正苦于以下问题:Python Model.serialize方法的具体用法?Python Model.serialize怎么用?Python Model.serialize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类neon.models.Model
的用法示例。
在下文中一共展示了Model.serialize方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_model_serialize
# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import serialize [as 别名]
def test_model_serialize(backend_default, data):
(X_train, y_train), (X_test, y_test), nclass = load_mnist(path=data)
train_set = DataIterator(
[X_train, X_train], y_train, nclass=nclass, lshape=(1, 28, 28))
init_norm = Gaussian(loc=0.0, scale=0.01)
# initialize model
path1 = Sequential([Conv((5, 5, 16), init=init_norm, bias=Constant(0), activation=Rectlin()),
Pooling(2),
Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())])
path2 = Sequential([Affine(nout=100, init=init_norm, bias=Constant(0), activation=Rectlin()),
Dropout(keep=0.5),
Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())])
layers = [MergeMultistream(layers=[path1, path2], merge="stack"),
Affine(nout=20, init=init_norm, batch_norm=True, activation=Rectlin()),
Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))]
tmp_save = 'test_model_serialize_tmp_save.pickle'
mlp = Model(layers=layers)
mlp.optimizer = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9)
mlp.cost = GeneralizedCost(costfunc=CrossEntropyBinary())
mlp.initialize(train_set, cost=mlp.cost)
n_test = 3
num_epochs = 3
# Train model for num_epochs and n_test batches
for epoch in range(num_epochs):
for i, (x, t) in enumerate(train_set):
x = mlp.fprop(x)
delta = mlp.cost.get_errors(x, t)
mlp.bprop(delta)
mlp.optimizer.optimize(mlp.layers_to_optimize, epoch=epoch)
if i > n_test:
break
# Get expected outputs of n_test batches and states of all layers
outputs_exp = []
pdicts_exp = [l.get_params_serialize() for l in mlp.layers_to_optimize]
for i, (x, t) in enumerate(train_set):
outputs_exp.append(mlp.fprop(x, inference=True))
if i > n_test:
break
# Serialize model
save_obj(mlp.serialize(keep_states=True), tmp_save)
# Load model
mlp = Model(layers=layers)
mlp.load_weights(tmp_save)
outputs = []
pdicts = [l.get_params_serialize() for l in mlp.layers_to_optimize]
for i, (x, t) in enumerate(train_set):
outputs.append(mlp.fprop(x, inference=True))
if i > n_test:
break
# Check outputs, states, and params are the same
for output, output_exp in zip(outputs, outputs_exp):
assert np.allclose(output.get(), output_exp.get())
for pd, pd_exp in zip(pdicts, pdicts_exp):
for s, s_e in zip(pd['states'], pd_exp['states']):
if isinstance(s, list): # this is the batch norm case
for _s, _s_e in zip(s, s_e):
assert np.allclose(_s, _s_e)
else:
assert np.allclose(s, s_e)
for p, p_e in zip(pd['params'], pd_exp['params']):
assert type(p) == type(p_e)
if isinstance(p, list): # this is the batch norm case
for _p, _p_e in zip(p, p_e):
assert np.allclose(_p, _p_e)
elif isinstance(p, np.ndarray):
assert np.allclose(p, p_e)
else:
assert p == p_e
os.remove(tmp_save)
示例2: __init__
# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import serialize [as 别名]
class DeepQNetwork:
def __init__(self, num_actions, args):
# create Neon backend
self.be = gen_backend(backend = args.backend,
batch_size = args.batch_size,
rng_seed = args.random_seed,
device_id = args.device_id,
default_dtype = np.dtype(args.datatype).type,
stochastic_round = args.stochastic_round)
# create model
layers = self.createLayers(num_actions)
self.model = Model(layers = layers)
self.cost = GeneralizedCost(costfunc = SumSquared())
self.optimizer = RMSProp(learning_rate = args.learning_rate,
decay_rate = args.rmsprop_decay_rate,
stochastic_round = args.stochastic_round)
# create target model
self.target_steps = args.target_steps
self.train_iterations = 0
if self.target_steps:
self.target_model = Model(layers = self.createLayers(num_actions))
self.save_weights_path = args.save_weights_path
else:
self.target_model = self.model
# remember parameters
self.num_actions = num_actions
self.batch_size = args.batch_size
self.discount_rate = args.discount_rate
self.history_length = args.history_length
self.screen_dim = (args.screen_height, args.screen_width)
self.clip_error = args.clip_error
# prepare tensors once and reuse them
self.input_shape = (self.history_length,) + self.screen_dim + (self.batch_size,)
self.tensor = self.be.empty(self.input_shape)
self.tensor.lshape = self.input_shape # needed for convolutional networks
self.targets = self.be.empty((self.num_actions, self.batch_size))
self.callback = None
def createLayers(self, num_actions):
# create network
init_norm = Gaussian(loc=0.0, scale=0.01)
layers = []
# The first hidden layer convolves 32 filters of 8x8 with stride 4 with the input image and applies a rectifier nonlinearity.
layers.append(Conv((8, 8, 32), strides=4, init=init_norm, activation=Rectlin()))
# The second hidden layer convolves 64 filters of 4x4 with stride 2, again followed by a rectifier nonlinearity.
layers.append(Conv((4, 4, 64), strides=2, init=init_norm, activation=Rectlin()))
# This is followed by a third convolutional layer that convolves 64 filters of 3x3 with stride 1 followed by a rectifier.
layers.append(Conv((3, 3, 64), strides=1, init=init_norm, activation=Rectlin()))
# The final hidden layer is fully-connected and consists of 512 rectifier units.
layers.append(Affine(nout=512, init=init_norm, activation=Rectlin()))
# The output layer is a fully-connected linear layer with a single output for each valid action.
layers.append(Affine(nout = num_actions, init = init_norm))
return layers
def setTensor(self, states):
# change order of axes to match what Neon expects
states = np.transpose(states, axes = (1, 2, 3, 0))
# copy() shouldn't be necessary here, but Neon doesn't work otherwise
self.tensor.set(states.copy())
# normalize network input between 0 and 1
self.be.divide(self.tensor, 255, self.tensor)
def train(self, minibatch, epoch):
# expand components of minibatch
prestates, actions, rewards, poststates, terminals = minibatch
assert len(prestates.shape) == 4
assert len(poststates.shape) == 4
assert len(actions.shape) == 1
assert len(rewards.shape) == 1
assert len(terminals.shape) == 1
assert prestates.shape == poststates.shape
assert prestates.shape[0] == actions.shape[0] == rewards.shape[0] == poststates.shape[0] == terminals.shape[0]
if self.target_steps and self.train_iterations % self.target_steps == 0:
# HACK: push something through network, so that weights exist
self.model.fprop(self.tensor)
# HACK: serialize network to disk and read it back to clone
filename = os.path.join(self.save_weights_path, "target_network.pkl")
save_obj(self.model.serialize(keep_states = False), filename)
self.target_model.load_weights(filename)
# feed-forward pass for poststates to get Q-values
self.setTensor(poststates)
postq = self.target_model.fprop(self.tensor, inference = True)
assert postq.shape == (self.num_actions, self.batch_size)
# calculate max Q-value for each poststate
maxpostq = self.be.max(postq, axis=0).asnumpyarray()
assert maxpostq.shape == (1, self.batch_size)
# feed-forward pass for prestates
self.setTensor(prestates)
preq = self.model.fprop(self.tensor, inference = False)
assert preq.shape == (self.num_actions, self.batch_size)
#.........这里部分代码省略.........
示例3: __init__
# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import serialize [as 别名]
class DeepQNetwork:
def __init__(self, state_size, num_steers, num_speeds, args):
# remember parameters
self.state_size = state_size
self.num_steers = num_steers
self.num_speeds = num_speeds
self.num_actions = num_steers + num_speeds
self.num_layers = args.hidden_layers
self.hidden_nodes = args.hidden_nodes
self.batch_size = args.batch_size
self.discount_rate = args.discount_rate
self.clip_error = args.clip_error
# create Neon backend
self.be = gen_backend(backend = args.backend,
batch_size = args.batch_size,
rng_seed = args.random_seed,
device_id = args.device_id,
datatype = np.dtype(args.datatype).type,
stochastic_round = args.stochastic_round)
# prepare tensors once and reuse them
self.input_shape = (self.state_size, self.batch_size)
self.input = self.be.empty(self.input_shape)
self.targets = self.be.empty((self.num_actions, self.batch_size))
# create model
self.model = Model(layers = self._createLayers())
self.cost = GeneralizedCost(costfunc = SumSquared())
self.model.initialize(self.input_shape[:-1], self.cost)
if args.optimizer == 'rmsprop':
self.optimizer = RMSProp(learning_rate = args.learning_rate,
decay_rate = args.decay_rate,
stochastic_round = args.stochastic_round)
elif args.optimizer == 'adam':
self.optimizer = Adam(learning_rate = args.learning_rate,
stochastic_round = args.stochastic_round)
elif args.optimizer == 'adadelta':
self.optimizer = Adadelta(decay = args.decay_rate,
stochastic_round = args.stochastic_round)
else:
assert false, "Unknown optimizer"
# create target model
self.target_steps = args.target_steps
self.train_iterations = 0
if self.target_steps:
self.target_model = Model(layers = self._createLayers())
self.target_model.initialize(self.input_shape[:-1])
self.save_weights_prefix = args.save_weights_prefix
else:
self.target_model = self.model
def _createLayers(self):
# create network
init_norm = Gaussian(loc=0.0, scale=0.01)
layers = []
for i in xrange(self.num_layers):
layers.append(Affine(nout=self.hidden_nodes, init=init_norm, activation=Rectlin()))
layers.append(Affine(nout=self.num_actions, init = init_norm))
return layers
def _setInput(self, states):
# change order of axes to match what Neon expects
states = np.transpose(states)
# copy() shouldn't be necessary here, but Neon doesn't work otherwise
self.input.set(states.copy())
# normalize network input between 0 and 1
#self.be.divide(self.input, 200, self.input)
def train(self, minibatch, epoch = 0):
# expand components of minibatch
prestates, steers, speeds, rewards, poststates, terminals = minibatch
assert len(prestates.shape) == 2
assert len(poststates.shape) == 2
assert len(steers.shape) == 1
assert len(speeds.shape) == 1
assert len(rewards.shape) == 1
assert len(terminals.shape) == 1
assert prestates.shape == poststates.shape
assert prestates.shape[0] == steers.shape[0] == speeds.shape[0] == rewards.shape[0] == poststates.shape[0] == terminals.shape[0]
if self.target_steps and self.train_iterations % self.target_steps == 0:
# HACK: serialize network to disk and read it back to clone
filename = self.save_weights_prefix + "_target.pkl"
save_obj(self.model.serialize(keep_states = False), filename)
self.target_model.load_weights(filename)
# feed-forward pass for poststates to get Q-values
self._setInput(poststates)
postq = self.target_model.fprop(self.input, inference = True)
assert postq.shape == (self.num_actions, self.batch_size)
# calculate max Q-value for each poststate
postq = postq.asnumpyarray()
maxsteerq = np.max(postq[:self.num_steers,:], axis=0)
assert maxsteerq.shape == (self.batch_size,), "size: %s" % str(maxsteerq.shape)
maxspeedq = np.max(postq[-self.num_speeds:,:], axis=0)
assert maxspeedq.shape == (self.batch_size,)
#.........这里部分代码省略.........
示例4: __init__
# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import serialize [as 别名]
#.........这里部分代码省略.........
raise NotImplementedError("Unsupported screen dim.")
# The second hidden layer convolves 64 filters of 4x4 with stride 2, again followed by a rectifier nonlinearity.
layers.append(Conv((4, 4, 64), strides=2, init=init_norm, activation=Rectlin()))
# This is followed by a third convolutional layer that convolves 64 filters of 3x3 with stride 1 followed by a rectifier.
layers.append(Conv((3, 3, 64), strides=1, init=init_norm, activation=Rectlin()))
# The final hidden layer is fully-connected and consists of 512 rectifier units.
layers.append(Affine(nout=512, init=init_norm, activation=Rectlin()))
# The output layer is a fully-connected linear layer with a single output for each valid action.
layers.append(Affine(nout=num_actions, init = init_norm))
return layers
def _setInput(self, states):
# change order of axes to match what Neon expects
states = np.transpose(states, axes = (1, 2, 3, 0))
# copy() shouldn't be necessary here, but Neon doesn't work otherwise
self.input.set(states.copy())
# normalize network input between 0 and 1
self.be.divide(self.input, 255, self.input)
def train(self, minibatch, epoch):
# expand components of minibatch
prestates, actions, rewards, poststates, terminals = minibatch
assert len(prestates.shape) == 4
assert len(poststates.shape) == 4
assert len(actions.shape) == 1
assert len(rewards.shape) == 1
assert len(terminals.shape) == 1
assert prestates.shape == poststates.shape
assert prestates.shape[0] == actions.shape[0] == rewards.shape[0] == poststates.shape[0] == terminals.shape[0]
if self.target_steps and self.train_iterations % self.target_steps == 0:
pdict = self.model.get_description(get_weights=True)
self.target_model.deserialize(pdict, load_states=False)
# feed-forward pass for poststates to get Q-values
self._setInput(poststates)
postq = self.target_model.fprop(self.input, inference = True)
assert postq.shape == (self.num_actions, self.batch_size)
# calculate max Q-value for each poststate
maxpostq = self.be.max(postq, axis=0).asnumpyarray()
assert maxpostq.shape == (1, self.batch_size)
# feed-forward pass for prestates
self._setInput(prestates)
preq = self.model.fprop(self.input, inference = False)
assert preq.shape == (self.num_actions, self.batch_size)
# make copy of prestate Q-values as targets
targets = preq.asnumpyarray()
# update Q-value targets for actions taken
for i, action in enumerate(actions):
if terminals[i]:
targets[action, i] = float(rewards[i])
else:
targets[action, i] = float(rewards[i]) + self.discount_rate * maxpostq[0,i]
# copy targets to GPU memory
self.targets.set(targets)
# calculate errors
deltas = self.cost.get_errors(preq, self.targets)
assert deltas.shape == (self.num_actions, self.batch_size)
#assert np.count_nonzero(deltas.asnumpyarray()) == 32
示例5: __init__
# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import serialize [as 别名]
class DeepQNetwork:
def __init__(self, state_size, num_actions, args):
# remember parameters
self.state_size = state_size
self.num_actions = num_actions
self.batch_size = args.batch_size
self.discount_rate = args.discount_rate
self.clip_error = args.clip_error
self.action_count = np.zeros(21)
# create Neon backend
self.be = gen_backend(backend = args.backend,
batch_size = args.batch_size,
rng_seed = args.random_seed,
device_id = args.device_id,
datatype = np.dtype(args.datatype).type,
stochastic_round = args.stochastic_round)
# prepare tensors once and reuse them
self.input_shape = (self.state_size, self.batch_size)
self.input = self.be.empty(self.input_shape)
self.targets = self.be.empty((self.num_actions, self.batch_size))
# create model
layers = self._createLayers(num_actions)
self.model = Model(layers = layers)
self.cost = GeneralizedCost(costfunc = SumSquared())
self.model.initialize(self.input_shape[:-1], self.cost)
if args.optimizer == 'rmsprop':
self.optimizer = RMSProp(learning_rate = args.learning_rate,
decay_rate = args.decay_rate,
stochastic_round = args.stochastic_round)
elif args.optimizer == 'adam':
self.optimizer = Adam(learning_rate = args.learning_rate,
stochastic_round = args.stochastic_round)
elif args.optimizer == 'adadelta':
self.optimizer = Adadelta(decay = args.decay_rate,
stochastic_round = args.stochastic_round)
else:
assert False, "Unknown optimizer"
# create target model
self.target_steps = args.target_steps
self.train_iterations = 0
if self.target_steps:
self.target_model = Model(layers = self._createLayers(num_actions))
self.target_model.initialize(self.input_shape[:-1])
self.save_weights_prefix = args.save_weights_prefix
else:
self.target_model = self.model
def _createLayers(self, num_actions):
# create network
init_norm = Gaussian(loc=0.0, scale=0.01)
layers = []
# The final hidden layer is fully-connected and consists of 512 rectifier units.
layers.append(Affine(nout=64, init=init_norm, bias=init_norm, activation=Rectlin()))
# The output layer is a fully-connected linear layer with a single output for each valid action.
layers.append(Affine(nout=num_actions, init=init_norm, bias=init_norm))
return layers
def _setInput(self, states):
# change order of axes to match what Neon expects
states = np.transpose(states)
# copy() shouldn't be necessary here, but Neon doesn't work otherwise
self.input.set(states.copy())
# normalize network input between 0 and 1
# self.be.divide(self.input, 255, self.input)
def train(self, minibatch, epoch):
# expand components of minibatch
prestates, actions, speed_actions, rewards, poststates, terminals = minibatch
assert len(prestates.shape) == 2
assert len(poststates.shape) == 2
assert len(actions.shape) == 1
assert len(rewards.shape) == 1
assert len(terminals.shape) == 1
assert prestates.shape == poststates.shape
assert prestates.shape[0] == actions.shape[0] == rewards.shape[0] == poststates.shape[0] == terminals.shape[0]
#print "WE ARE ACTUALLY TRAINING IN HERE"
if self.target_steps and self.train_iterations % self.target_steps == 0:
# HACK: serialize network to disk and read it back to clone
filename = self.save_weights_prefix + "_target.pkl"
save_obj(self.model.serialize(keep_states = False), filename)
self.target_model.load_weights(filename)
# feed-forward pass for poststates to get Q-values
self._setInput(poststates)
postq = self.target_model.fprop(self.input, inference = True)
assert postq.shape == (self.num_actions, self.batch_size)
# calculate max Q-value for each poststate
postq = postq.asnumpyarray()
maxpostq = np.max(postq, axis=0)
#print maxpostq.shape
assert maxpostq.shape == (self.batch_size,)
# feed-forward pass for prestates
self._setInput(prestates)
preq = self.model.fprop(self.input, inference = False)
#.........这里部分代码省略.........