当前位置: 首页>>代码示例>>Python>>正文


Python Model.save_params方法代码示例

本文整理汇总了Python中neon.models.Model.save_params方法的典型用法代码示例。如果您正苦于以下问题:Python Model.save_params方法的具体用法?Python Model.save_params怎么用?Python Model.save_params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在neon.models.Model的用法示例。


在下文中一共展示了Model.save_params方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]
class MostCommonWordSense:

    def __init__(self, rounding, callback_args, epochs):
        # setup weight initialization function
        self.init = Gaussian(loc=0.0, scale=0.01)
        # setup optimizer
        self.optimizer = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9,
                                                 stochastic_round=rounding)
        # setup cost function as CrossEntropy
        self.cost = GeneralizedCost(costfunc=SumSquared())
        self.epochs = epochs
        self.model = None
        self.callback_args = callback_args

    def build(self):
        # setup model layers
        layers = [Affine(nout=100, init=self.init, bias=self.init, activation=Rectlin()),
                  Affine(nout=2, init=self.init, bias=self.init, activation=Softmax())]

        # initialize model object
        self.model = Model(layers=layers)

    def fit(self, valid_set, train_set):
        # configure callbacks
        callbacks = Callbacks(self.model, eval_set=valid_set, **self.callback_args)
        self.model.fit(train_set, optimizer=self.optimizer, num_epochs=self.epochs,
                       cost=self.cost, callbacks=callbacks)

    def save(self, save_path):
        self.model.save_params(save_path)

    def load(self, model_path):
        self.model = Model(model_path)

    def eval(self, valid_set):
        eval_rate = self.model.eval(valid_set, metric=Misclassification())
        return eval_rate

    def get_outputs(self, valid_set):
        return self.model.get_outputs(valid_set)
开发者ID:cdj0311,项目名称:nlp-architect,代码行数:42,代码来源:most_common_word_sense.py

示例2: test_model_serialize

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]
def test_model_serialize(backend_default, data):
    dataset = MNIST(path=data)
    (X_train, y_train), (X_test, y_test), nclass = dataset.load_data()
    train_set = ArrayIterator(
        [X_train, X_train], y_train, nclass=nclass, lshape=(1, 28, 28))

    init_norm = Gaussian(loc=0.0, scale=0.01)

    # initialize model
    path1 = Sequential([Conv((5, 5, 16), init=init_norm, bias=Constant(0), activation=Rectlin()),
                        Pooling(2),
                        Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())])
    path2 = Sequential([Affine(nout=100, init=init_norm, bias=Constant(0), activation=Rectlin()),
                        Dropout(keep=0.5),
                        Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())])
    layers = [MergeMultistream(layers=[path1, path2], merge="stack"),
              Affine(nout=20, init=init_norm, batch_norm=True, activation=Rectlin()),
              Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))]

    tmp_save = 'test_model_serialize_tmp_save.pickle'
    mlp = Model(layers=layers)
    mlp.optimizer = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9)
    mlp.cost = GeneralizedCost(costfunc=CrossEntropyBinary())
    mlp.initialize(train_set, cost=mlp.cost)
    n_test = 3
    num_epochs = 3
    # Train model for num_epochs and n_test batches
    for epoch in range(num_epochs):
        for i, (x, t) in enumerate(train_set):
            x = mlp.fprop(x)
            delta = mlp.cost.get_errors(x, t)
            mlp.bprop(delta)
            mlp.optimizer.optimize(mlp.layers_to_optimize, epoch=epoch)
            if i > n_test:
                break

    # Get expected outputs of n_test batches and states of all layers
    outputs_exp = []
    pdicts_exp = [l.get_params_serialize() for l in mlp.layers_to_optimize]
    for i, (x, t) in enumerate(train_set):
        outputs_exp.append(mlp.fprop(x, inference=True))
        if i > n_test:
            break

    # Serialize model
    mlp.save_params(tmp_save, keep_states=True)

    # Load model
    mlp = Model(tmp_save)

    mlp.initialize(train_set)
    outputs = []
    pdicts = [l.get_params_serialize() for l in mlp.layers_to_optimize]
    for i, (x, t) in enumerate(train_set):
        outputs.append(mlp.fprop(x, inference=True))
        if i > n_test:
            break

    # Check outputs, states, and params are the same
    for output, output_exp in zip(outputs, outputs_exp):
        assert allclose_with_out(output.get(), output_exp.get())

    for pd, pd_exp in zip(pdicts, pdicts_exp):
        for s, s_e in zip(pd['states'], pd_exp['states']):
            if isinstance(s, list):  # this is the batch norm case
                for _s, _s_e in zip(s, s_e):
                    assert allclose_with_out(_s, _s_e)
            else:
                assert allclose_with_out(s, s_e)
        for p, p_e in zip(pd['params'], pd_exp['params']):
            assert type(p) == type(p_e)
            if isinstance(p, list):  # this is the batch norm case
                for _p, _p_e in zip(p, p_e):
                    assert allclose_with_out(_p, _p_e)
            elif isinstance(p, np.ndarray):
                assert allclose_with_out(p, p_e)
            else:
                assert p == p_e

    os.remove(tmp_save)
开发者ID:StevenLOL,项目名称:neon,代码行数:82,代码来源:test_model.py

示例3: train_mlp

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]

#.........这里部分代码省略.........
	
	#preprocessor
	std_scale = preprocessing.StandardScaler(with_mean=True,with_std=True)
	#std_scale = feature_scaler(type='Standardizer',with_mean=True,with_std=True)
	
	#number of non one-hot encoded features, including ground truth
	num_feat = 4
	
	# load up the mnist data set
	# split into train and tests sets
	#load data from csv-files and rescale
	#training
	traindf = pd.DataFrame.from_csv('data/train.csv')
	ncols = traindf.shape[1]
	
	#tmpmat=std_scale.fit_transform(traindf.as_matrix())
	#print std_scale.scale_
	#print std_scale.mean_
	
	tmpmat = traindf.as_matrix()
	#print tmpmat[:,1:num_feat]
	
	tmpmat[:,:num_feat] = std_scale.fit_transform(tmpmat[:,:num_feat])
	X_train = tmpmat[:,1:]
	y_train = np.reshape(tmpmat[:,0],(tmpmat[:,0].shape[0],1))
	
	#validation
	validdf = pd.DataFrame.from_csv('data/validate.csv')
	ncols = validdf.shape[1]
	tmpmat = validdf.as_matrix()
	tmpmat[:,:num_feat] = std_scale.transform(tmpmat[:,:num_feat])
	X_valid = tmpmat[:,1:]
	y_valid = np.reshape(tmpmat[:,0],(tmpmat[:,0].shape[0],1))
	
	#test
	testdf = pd.DataFrame.from_csv('data/test.csv')
	ncols = testdf.shape[1]
	tmpmat = testdf.as_matrix()
	tmpmat[:,:num_feat] = std_scale.transform(tmpmat[:,:num_feat])
	X_test = tmpmat[:,1:]
	y_test = np.reshape(tmpmat[:,0],(tmpmat[:,0].shape[0],1))
	
	# setup a training set iterator
	train_set = CustomDataIterator(X_train, lshape=(X_train.shape[1]), y_c=y_train)
	# setup a validation data set iterator
	valid_set = CustomDataIterator(X_valid, lshape=(X_valid.shape[1]), y_c=y_valid)
	# setup a validation data set iterator
	test_set = CustomDataIterator(X_test, lshape=(X_test.shape[1]), y_c=y_test)
	
	# setup weight initialization function
	init_norm = Xavier()
	
	# setup model layers
	layers = [Affine(nout=X_train.shape[1], init=init_norm, activation=Rectlin()),
	          Dropout(keep=0.5),
	          Affine(nout=X_train.shape[1]/2, init=init_norm, activation=Rectlin()),
			  Linear(nout=1, init=init_norm)]
	
	# setup cost function as CrossEntropy
	cost = GeneralizedCost(costfunc=SmoothL1Loss())
	
	# setup optimizer
	#schedule
	#schedule = ExpSchedule(decay=0.3)
	#optimizer = GradientDescentMomentum(0.0001, momentum_coef=0.9, stochastic_round=args.rounding, schedule=schedule)
	optimizer = Adam(learning_rate=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1.e-8)
	
	# initialize model object
	mlp = Model(layers=layers)
	
	# configure callbacks
	if args.callback_args['eval_freq'] is None:
		args.callback_args['eval_freq'] = 1
	
	# configure callbacks
	callbacks = Callbacks(mlp, eval_set=valid_set, **args.callback_args)
	
	callbacks.add_early_stop_callback(stop_func)
	callbacks.add_save_best_state_callback(os.path.join(args.data_dir, "early_stop-best_state.pkl"))
	
	# run fit
	mlp.fit(train_set, optimizer=optimizer, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
	
	#evaluate model
	print('Evaluation Error = %.4f'%(mlp.eval(valid_set, metric=SmoothL1Metric())))
	print('Test set error = %.4f'%(mlp.eval(test_set, metric=SmoothL1Metric())))
	
	# Saving the model
	print 'Saving model parameters!'
	mlp.save_params("model/homeapp_model.prm")
	
	# Reloading saved model
	# This should go in run.py
	mlp=Model("model/homeapp_model.prm")
	print('Test set error = %.4f'%(mlp.eval(test_set, metric=SmoothL1Metric())))
	
	# save the preprocessor vectors:
	np.savez("model/homeapp_preproc", mean=std_scale.mean_, std=std_scale.scale_)

	return 1 
开发者ID:ankitvb,项目名称:homeprice,代码行数:104,代码来源:train_mlp.py

示例4: __init__

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]

#.........这里部分代码省略.........
  def _setInput(self, states):
    # change order of axes to match what Neon expects
    states = np.transpose(states, axes = (1, 2, 3, 0))
    # copy() shouldn't be necessary here, but Neon doesn't work otherwise
    self.input.set(states.copy())
    # normalize network input between 0 and 1
    self.be.divide(self.input, 255, self.input)

  def train(self, minibatch, epoch):
    # expand components of minibatch
    prestates, actions, rewards, poststates, terminals = minibatch
    assert len(prestates.shape) == 4
    assert len(poststates.shape) == 4
    assert len(actions.shape) == 1
    assert len(rewards.shape) == 1
    assert len(terminals.shape) == 1
    assert prestates.shape == poststates.shape
    assert prestates.shape[0] == actions.shape[0] == rewards.shape[0] == poststates.shape[0] == terminals.shape[0]

    if self.target_steps and self.train_iterations % self.target_steps == 0:
      # have to serialize also states for batch normalization to work
      pdict = self.model.get_description(get_weights=True, keep_states=True)
      self.target_model.deserialize(pdict, load_states=True)

    # feed-forward pass for poststates to get Q-values
    self._setInput(poststates)
    postq = self.target_model.fprop(self.input, inference = True)
    assert postq.shape == (self.num_actions, self.batch_size)

    # calculate max Q-value for each poststate
    maxpostq = self.be.max(postq, axis=0).asnumpyarray()
    assert maxpostq.shape == (1, self.batch_size)

    # feed-forward pass for prestates
    self._setInput(prestates)
    preq = self.model.fprop(self.input, inference = False)
    assert preq.shape == (self.num_actions, self.batch_size)

    # make copy of prestate Q-values as targets
    # It seems neccessary for cpu backend.
    targets = preq.asnumpyarray().copy()

    # clip rewards between -1 and 1
    rewards = np.clip(rewards, self.min_reward, self.max_reward)

    # update Q-value targets for actions taken
    for i, action in enumerate(actions):
      if terminals[i]:
        targets[action, i] = float(rewards[i])
      else:
        targets[action, i] = float(rewards[i]) + self.discount_rate * maxpostq[0,i]

    # copy targets to GPU memory
    self.targets.set(targets)

    # calculate errors
    deltas = self.cost.get_errors(preq, self.targets)
    assert deltas.shape == (self.num_actions, self.batch_size)
    #assert np.count_nonzero(deltas.asnumpyarray()) == 32

    # calculate cost, just in case
    cost = self.cost.get_cost(preq, self.targets)
    assert cost.shape == (1,1)

    # clip errors
    if self.clip_error:
      self.be.clip(deltas, -self.clip_error, self.clip_error, out = deltas)

    # perform back-propagation of gradients
    self.model.bprop(deltas)

    # perform optimization
    self.optimizer.optimize(self.model.layers_to_optimize, epoch)

    # increase number of weight updates (needed for target clone interval)
    self.train_iterations += 1

    # calculate statistics
    if self.callback:
      self.callback.on_train(cost[0,0])

  def predict(self, states):
    # minibatch is full size, because Neon doesn't let change the minibatch size
    assert states.shape == ((self.batch_size, self.history_length,) + self.screen_dim)

    # calculate Q-values for the states
    self._setInput(states)
    qvalues = self.model.fprop(self.input, inference = True)
    assert qvalues.shape == (self.num_actions, self.batch_size)
    if logger.isEnabledFor(logging.DEBUG):
      logger.debug("Q-values: " + str(qvalues.asnumpyarray()[:,0]))

    # transpose the result, so that batch size is first dimension
    return qvalues.T.asnumpyarray()

  def load_weights(self, load_path):
    self.model.load_params(load_path)

  def save_weights(self, save_path):
    self.model.save_params(save_path)
开发者ID:loofahcus,项目名称:simple_dqn,代码行数:104,代码来源:deepqnetwork.py

示例5: model

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]
class NpSemanticSegClassifier:
    """
    NP Semantic Segmentation classifier model (based on Neon framework).

    Args:
        num_epochs(int): number of epochs to train the model
        **callback_args (dict): callback args keyword arguments to init a Callback for the model
        cost: the model's cost function. Default is 'neon.transforms.CrossEntropyBinary' cost
        optimizer (:obj:`neon.optimizers`): the model's optimizer. Default is
        'neon.optimizers.GradientDescentMomentum(0.07, momentum_coef=0.9)'
    """

    def __init__(self, num_epochs, callback_args,
                 optimizer=GradientDescentMomentum(0.07, momentum_coef=0.9)):
        """

        Args:
            num_epochs(int): number of epochs to train the model
            **callback_args (dict): callback args keyword arguments to init Callback for the model
            cost: the model's cost function. Default is 'neon.transforms.CrossEntropyBinary' cost
            optimizer (:obj:`neon.optimizers`): the model's optimizer. Default is
            `neon.optimizers.GradientDescentMomentum(0.07, momentum_coef=0.9)`
        """
        self.model = None
        self.cost = GeneralizedCost(costfunc=CrossEntropyBinary())
        self.optimizer = optimizer
        self.epochs = num_epochs
        self.callback_args = callback_args

    def build(self):
        """
        Build the model's layers
        """
        first_layer_dens = 64
        second_layer_dens = 64
        output_layer_dens = 2
        # setup weight initialization function
        init_norm = Gaussian(scale=0.01)
        # setup model layers
        layers = [Affine(nout=first_layer_dens, init=init_norm,
                         activation=Rectlin()),
                  Affine(nout=second_layer_dens, init=init_norm,
                         activation=Rectlin()),
                  Affine(nout=output_layer_dens, init=init_norm,
                         activation=Logistic(shortcut=True))]

        # initialize model object
        self.model = Model(layers=layers)

    def fit(self, test_set, train_set):
        """
        Train and fit the model on the datasets

        Args:
            test_set (:obj:`neon.data.ArrayIterators`): The test set
            train_set (:obj:`neon.data.ArrayIterators`): The train set
            args: callback_args and epochs from ArgParser input
        """
        # configure callbacks
        callbacks = Callbacks(self.model, eval_set=test_set, **self.callback_args)
        self.model.fit(train_set, optimizer=self.optimizer, num_epochs=self.epochs, cost=self.cost,
                       callbacks=callbacks)

    def save(self, model_path):
        """
        Save the model's prm file in model_path location

        Args:
            model_path(str): local path for saving the model
        """
        self.model.save_params(model_path)

    def load(self, model_path):
        """
        Load pre-trained model's .prm file to NpSemanticSegClassifier object

        Args:
            model_path(str): local path for loading the model
        """
        self.model = Model(model_path)

    def eval(self, test_set):
        """
        Evaluate the model's test_set on error_rate, test_accuracy_rate and precision_recall_rate

        Args:
            test_set (ArrayIterator): The test set

        Returns:
            tuple(int): error_rate, test_accuracy_rate and precision_recall_rate
        """
        error_rate = self.model.eval(test_set, metric=Misclassification())
        test_accuracy_rate = self.model.eval(test_set, metric=Accuracy())
        precision_recall_rate = self.model.eval(test_set, metric=PrecisionRecall(2))
        return error_rate, test_accuracy_rate, precision_recall_rate

    def get_outputs(self, test_set):
        """
        Classify the dataset on the model

#.........这里部分代码省略.........
开发者ID:cdj0311,项目名称:nlp-architect,代码行数:103,代码来源:np_semantic_segmentation.py

示例6: Affine

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]
          Affine(nout=4, init=init_uni, activation=Softmax())]

cost = GeneralizedCost(costfunc=CrossEntropyMulti())

# Create model
mlp = Model(layers=layers)
callbacks = Callbacks(mlp, eval_set=test)  # Track cost function

# Train model
mlp.fit(train, optimizer=opt_gdm, num_epochs=num_epochs, cost=cost, callbacks=callbacks)

# Check performance
print 'Misclassification error = %.1f%%' % (mlp.eval(test, metric=Misclassification())*100)

# Save trained model
mlp.save_params(param_file_name)


# Sanity check
from PIL import Image
import numpy as np
from neon.data.dataiterator import ArrayIterator

W = img_size
H = img_size
L = W*H*3
size = H, W
x_new = np.zeros((128, L), dtype=np.float32)


def load_sample(test_file_name):
开发者ID:oomwoo,项目名称:ubuntu,代码行数:33,代码来源:trainbot.py

示例7: HDF5Iterator

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]
                     validation=False,
                     remove_history=False,
                     minimal_set=False,
                     next_N=3)
valid = HDF5Iterator(filenames,
                     ndata=(16 * 2014),
                     validation=True,
                     remove_history=False,
                     minimal_set=False,
                     next_N=1)

out1, out2, out3 = model.layers.get_terminal()

cost = Multicost(costs=[GeneralizedCost(costfunc=CrossEntropyMulti(usebits=True)),
                        GeneralizedCost(costfunc=CrossEntropyMulti(usebits=True)),
                        GeneralizedCost(costfunc=CrossEntropyMulti(usebits=True))])

schedule = ExpSchedule(decay=(1.0 / 50))  # halve the learning rate every 50 epochs
opt_gdm = GradientDescentMomentum(learning_rate=0.01,
                                  momentum_coef=0.9,
                                  stochastic_round=args.rounding,
                                  gradient_clip_value=1,
                                  gradient_clip_norm=5,
                                  wdecay=0.0001,
                                  schedule=schedule)

callbacks = Callbacks(model, eval_set=valid, metric=TopKMisclassification(5), **args.callback_args)
callbacks.add_save_best_state_callback(os.path.join(args.workspace_dir, "best_state_h5resnet.pkl"))
model.fit(train, optimizer=opt_gdm, num_epochs=num_epochs, cost=cost, callbacks=callbacks)
model.save_params(os.path.join(args.workspace_dir, "final_state_h5resnet.pkl"))
开发者ID:thouis,项目名称:go_policy,代码行数:32,代码来源:train.py

示例8: DQNNeon

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]

#.........这里部分代码省略.........
        assert len(poststates.shape) == 4
        assert len(actions.shape) == 1
        assert len(rewards.shape) == 1
        assert len(terminals.shape) == 1
        assert prestates.shape == poststates.shape
        assert prestates.shape[0] == actions.shape[0] == rewards.shape[0] == poststates.shape[0] == terminals.shape[0]
        # feed-forward pass for poststates to get Q-values
        self._prepare_network_input(poststates)
        postq = self.target_model.fprop(self.input, inference = True)
        assert postq.shape == (self.output_shape, self.batch_size)
        # calculate max Q-value for each poststate
        maxpostq = self.be.max(postq, axis=0).asnumpyarray()
        assert maxpostq.shape == (1, self.batch_size)
        # average maxpostq for stats
        maxpostq_avg = maxpostq.mean()
        # feed-forward pass for prestates
        self._prepare_network_input(prestates)
        preq = self.model.fprop(self.input, inference = False)
        assert preq.shape == (self.output_shape, self.batch_size)
        # make copy of prestate Q-values as targets
        targets = preq.asnumpyarray()
        # clip rewards between -1 and 1
        rewards = np.clip(rewards, self.min_reward, self.max_reward)
        # update Q-value targets for each state only at actions taken
        for i, action in enumerate(actions):
            if terminals[i]:
                targets[action, i] = float(rewards[i])
            else:
                targets[action, i] = float(rewards[i]) + self.discount_rate * maxpostq[0,i]
        # copy targets to GPU memory
        self.targets.set(targets)
        # calculate errors
        errors = self.cost_func.get_errors(preq, self.targets)
        assert errors.shape == (self.output_shape, self.batch_size)
        # average error where there is a error (should be 1 in every row)
        #TODO: errors_avg = np.sum(errors)/np.size(errors[errors>0.])
        # clip errors
        if self.clip_error:
            self.be.clip(errors, -self.clip_error, self.clip_error, out = errors)
        # calculate cost, just in case
        cost = self.cost_func.get_cost(preq, self.targets)
        assert cost.shape == (1,1)
        # perform back-propagation of gradients
        self.model.bprop(errors)
        # perform optimization
        self.optimizer.optimize(self.model.layers_to_optimize, epoch)
        # increase number of weight updates (needed for target clone interval)
        self.update_iterations += 1
        if self.target_update_frequency and self.update_iterations % self.target_update_frequency == 0:
            self._copy_theta()
            _logger.info("Network update #%d: Cost = %s, Avg Max Q-value = %s" % (self.update_iterations, str(cost.asnumpyarray()[0][0]), str(maxpostq_avg)))
        # update statistics
        if self.callback:
            self.callback.from_learner(cost.asnumpyarray()[0,0], maxpostq_avg)

    def get_Q(self, state):
        """ Calculates the Q-values for one mini-batch.

        Args:
            state(numpy.ndarray): Single state, shape=(sequence_length,frame_width,frame_height).

        Returns:
            q_values (numpy.ndarray): Results for first element of mini-batch from one forward pass through the network, shape=(self.output_shape,)
        """
        _logger.debug("State shape = %s" % str(state.shape))
        # minibatch is full size, because Neon doesn't let change the minibatch size
        # so we need to run 32 forward steps to get the one we actually want
        self.dummy_batch[0] = state
        states = self.dummy_batch
        assert states.shape == ((self.batch_size, self.sequence_length,) + self.frame_dims)
        # calculate Q-values for the states
        self._prepare_network_input(states)
        qvalues = self.model.fprop(self.input, inference = True)
        assert qvalues.shape == (self.output_shape, self.batch_size)
        _logger.debug("Qvalues: %s" % (str(qvalues.asnumpyarray()[:,0])))
        return qvalues.asnumpyarray()[:,0]

    def _copy_theta(self):
        """ Copies the weights of the current network to the target network. """
        _logger.debug("Copying weights")
        pdict = self.model.get_description(get_weights=True, keep_states=True)
        self.target_model.deserialize(pdict, load_states=True)

    def save_weights(self, target_dir, epoch):
        """ Saves the current network parameters to disk.

        Args:
            target_dir (str): Directory where the network parameters are stored for each episode.
            epoch (int): Current epoch.
        """
        filename = "%s_%s_%s_%d.prm" % (str(self.args.game.lower()), str(self.args.net_type.lower()), str(self.args.optimizer.lower()), (epoch + 1))
        self.model.save_params(os.path.join(target_dir, filename))

    def load_weights(self, source_file):
        """ Loads the network parameters from a given file.

        Args:
            source_file (str): Complete path to a file with network parameters.
        """
        self.model.load_params(source_file)
开发者ID:maurolopes,项目名称:deepatari,代码行数:104,代码来源:dqnneon.py

示例9: HDF5Iterator

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]
train = HDF5Iterator(filenames,
                     [h['X'] for h in h5s],
                     [h['y'] for h in h5s],
                     ndata=(256 * 1024),
                     validation=False,
                     remove_history=True)
valid = HDF5Iterator(filenames,
                     [h['X'] for h in h5s],
                     [h['y'] for h in h5s],
                     ndata=1024,
                     validation=True,
                     remove_history=True)

cost = GeneralizedCost(costfunc=CrossEntropyBinary())
opt_gdm = GradientDescentMomentum(learning_rate=0.01,
                                  momentum_coef=0.9,
                                  stochastic_round=args.rounding)

callbacks = Callbacks(model, eval_set=valid, metric=TopKMisclassification(5), **args.callback_args)

old_params = get_model_params(args.server_address)
num_iterations = 1
while True:
    update_model(model, old_params)
    model.fit(train, optimizer=opt_gdm, num_epochs=1, cost=cost, callbacks=callbacks)
    model.save_params(os.path.join(args.workspace_dir, "iter_{}.pkl".format(num_iterations)))

    deltas = compute_deltas(old_params, model)
    old_params = put_deltas(args.server_address, deltas)
    num_iterations += 1
开发者ID:thouis,项目名称:go_policy,代码行数:32,代码来源:model_client.py

示例10: SequenceChunker

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]

#.........这里部分代码省略.........
                 dropout=0.5
                 ):

        init = GlorotUniform()
        tokens = []
        if use_external_embedding is None:
            tokens.append(LookupTable(vocab_size=token_vocab_size,
                                      embedding_dim=token_embedding_size,
                                      init=init,
                                      pad_idx=0))
        else:
            tokens.append(DataInput())
        tokens.append(Reshape((-1, sentence_length)))
        f_layers = [tokens]

        # add POS tag input
        if pos_vocab_size is not None and pos_embedding_size is not None:
            f_layers.append([
                LookupTable(vocab_size=pos_vocab_size,
                            embedding_dim=pos_embedding_size,
                            init=init,
                            pad_idx=0),
                Reshape((-1, sentence_length))
            ])

        # add Character RNN input
        if char_vocab_size is not None and char_embedding_size is not None:
            char_lut_layer = LookupTable(vocab_size=char_vocab_size,
                                         embedding_dim=char_embedding_size,
                                         init=init,
                                         pad_idx=0)
            char_nn = [char_lut_layer,
                       TimeDistBiLSTM(char_embedding_size, init, activation=Logistic(),
                                      gate_activation=Tanh(),
                                      reset_cells=True, reset_freq=max_char_word_length),
                       TimeDistributedRecurrentLast(timesteps=max_char_word_length),
                       Reshape((-1, sentence_length))]

            f_layers.append(char_nn)

        layers = []
        if len(f_layers) == 1:
            layers.append(f_layers[0][0])
        else:
            layers.append(MergeMultistream(layers=f_layers, merge="stack"))
            layers.append(Reshape((-1, sentence_length)))
        layers += [DeepBiLSTM(lstm_hidden_size, init, activation=Logistic(),
                              gate_activation=Tanh(),
                              reset_cells=True,
                              depth=num_lstm_layers),
                   Dropout(keep=dropout),
                   Affine(num_labels, init, bias=init, activation=Softmax())]
        self._model = Model(layers=layers)

    def fit(self, dataset, optimizer, cost, callbacks, epochs=10):
        """
        fit a model

        Args:
            dataset: train/test set of CONLL2000 dataset
            optimizer: optimizer (Neon based)
            cost: cost function (Neon based)
            callbacks: callbacks (Neon based)
            epochs (int, optional): number of epochs to train
        """
        self._model.fit(dataset,
                        optimizer=optimizer,
                        num_epochs=epochs,
                        cost=cost,
                        callbacks=callbacks)

    def predict(self, dataset):
        """
        predict output of given dataset

        Args:
            dataset: Neon based iterator

        Returns:
            prediction on given dataset
        """
        return self._model.get_outputs(dataset)

    def save(self, path):
        """
        Save model weights to path

        Args:
            path (str): path to weights file
        """
        self._model.save_params(path)

    def get_model(self):
        """
        Get model

        Returns:
            Neon model object
        """
        return self._model
开发者ID:cdj0311,项目名称:nlp-architect,代码行数:104,代码来源:chunker.py

示例11: GeneralizedCost

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]
from neon.layers import GeneralizedCost
from neon.transforms import CrossEntropyMulti
cost = GeneralizedCost(costfunc=CrossEntropyMulti())

from neon.optimizers import GradientDescentMomentum, RMSProp
optimizer = GradientDescentMomentum(learning_rate=0.005,
                                    momentum_coef=0.9)

# Set up callbacks. By default sets up a progress bar
from neon.callbacks.callbacks import Callbacks
callbacks = Callbacks(model, train_set)

model.fit(dataset=train_set, cost=cost, optimizer=optimizer,  num_epochs=num_epochs, callbacks=callbacks)

model.save_params("cifar10_model.prm")

# Evaluate performance
from neon.transforms import Misclassification
error_pct = 100 * model.eval(test_set, metric=Misclassification())
print 'Misclassification error = %.1f%%' % error_pct


# Sanity check 1
# an image of a frog from wikipedia
# img_source = "https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Atelopus_zeteki1.jpg/440px-Atelopus_zeteki1.jpg"
# import urllib
# urllib.urlretrieve(img_source, filename="image.jpg")

from PIL import Image
import numpy as np
开发者ID:oomwoo,项目名称:ubuntu,代码行数:32,代码来源:my_cifar_train.py

示例12: Callbacks

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]
if args.callback_args['eval_freq'] is None:
	args.callback_args['eval_freq'] = 1

# configure callbacks
callbacks = Callbacks(mlp, eval_set=valid_set, **args.callback_args)

#callbacks.add_early_stop_callback(stop_func)
#callbacks.add_save_best_state_callback(os.path.join(args.data_dir, "early_stop-best_state.pkl"))

callbacks.add_early_stop_callback(stop_func)
callbacks.add_save_best_state_callback(os.path.join(args.data_dir, "early_stop-best_state.pkl"))

# run fit
mlp.fit(train_set, optimizer=optimizer, num_epochs=args.epochs, cost=cost, callbacks=callbacks)

#evaluate model
print('Evaluation Error = %.4f'%(mlp.eval(valid_set, metric=SmoothL1Metric())))
print('Test set error = %.4f'%(mlp.eval(test_set, metric=SmoothL1Metric())))

# Saving the model
print 'Saving model parameters!'
mlp.save_params("jobwait_model.prm")

# Reloading saved model
# This should go in run.py
mlp=Model("jobwait_model.prm")
print('Test set error = %.4f'%(mlp.eval(test_set, metric=SmoothL1Metric())))

# save the preprocessor vectors:
np.savez("jobwait_preproc", mean=std_scale.mean_, std=std_scale.scale_)
开发者ID:NERSC,项目名称:qpredict,代码行数:32,代码来源:train_mlp.py

示例13: ModelRunnerNeon

# 需要导入模块: from neon.models import Model [as 别名]
# 或者: from neon.models.Model import save_params [as 别名]

#.........这里部分代码省略.........
        initializer = self.get_initializer(input_size = 7 * 7 * 64)
        layers.append(Affine(nout=512, init=initializer, bias=initializer, activation=Rectlin()))
        
        initializer = self.get_initializer(input_size = 512)
        layers.append(Affine(nout=max_action_no, init=initializer, bias=initializer))
        
        return layers        
        
    def clip_reward(self, reward):
        if reward > self.args.clip_reward_high:
            return self.args.clip_reward_high
        elif reward < self.args.clip_reward_low:
            return self.args.clip_reward_low
        else:
            return reward

    def set_input(self, data):
        if self.use_gpu_replay_mem:
            self.be.copy_transpose(data, self.input_uint8, axes=(1, 2, 3, 0))
            self.input[:] = self.input_uint8 / 255
        else:
            self.input.set(data.transpose(1, 2, 3, 0).copy())
            self.be.divide(self.input, 255, self.input)

    def predict(self, history_buffer):
        self.set_input(history_buffer)
        output  = self.train_net.fprop(self.input, inference=True)
        return output.T.asnumpyarray()[0]            

    def print_weights(self):
        pass

    def train(self, minibatch, replay_memory, learning_rate, debug):
        if self.args.prioritized_replay == True:
            prestates, actions, rewards, poststates, terminals, replay_indexes, heap_indexes, weights = minibatch
        else:
            prestates, actions, rewards, poststates, terminals = minibatch
        
        # Get Q*(s, a) with targetNet
        self.set_input(poststates)
        post_qvalue = self.target_net.fprop(self.input, inference=True).T.asnumpyarray()
        
        if self.args.double_dqn == True:
            # Get Q*(s, a) with trainNet
            post_qvalue2 = self.train_net.fprop(self.input, inference=True).T.asnumpyarray()
        
        # Get Q(s, a) with trainNet
        self.set_input(prestates)
        pre_qvalue = self.train_net.fprop(self.input, inference=False)
        
        label = pre_qvalue.asnumpyarray().copy()
        for i in range(0, self.train_batch_size):
            if self.args.clip_reward:
                reward = self.clip_reward(rewards[i])
            else:
                reward = rewards[i]
            if terminals[i]:
                label[actions[i], i] = reward
            else:
                if self.args.double_dqn == True:
                    max_index = np.argmax(post_qvalue2[i])
                    label[actions[i], i] = reward + self.discount_factor* post_qvalue[i][max_index]
                else:
                    label[actions[i], i] = reward + self.discount_factor* np.max(post_qvalue[i])

        # copy targets to GPU memory
        self.targets.set(label)
    
        delta = self.cost.get_errors(pre_qvalue, self.targets)
        
        if self.args.prioritized_replay == True:
            delta_value = delta.asnumpyarray()
            for i in range(self.train_batch_size):
                if debug:
                    print 'weight[%s]: %.5f, delta: %.5f, newDelta: %.5f' % (i, weights[i], delta_value[actions[i], i], weights[i] * delta_value[actions[i], i]) 
                replay_memory.update_td(heap_indexes[i], abs(delta_value[actions[i], i]))
                delta_value[actions[i], i] = weights[i] * delta_value[actions[i], i]
            delta.set(delta_value.copy())
          
        if self.args.clip_loss:
            self.be.clip(delta, -1.0, 1.0, out = delta)
                
        self.train_net.bprop(delta)
        self.optimizer.optimize(self.train_net.layers_to_optimize, epoch=0)

    def update_model(self):
        # have to serialize also states for batch normalization to work
        pdict = self.train_net.get_description(get_weights=True, keep_states=True)
        self.target_net.deserialize(pdict, load_states=True)
        #print ('Updated target model')

    def finish_train(self):
        self.running = False
    
    def load(self, file_name):
        self.train_net.load_params(file_name)
        self.update_model()
        
    def save(self, file_name):
        self.train_net.save_params(file_name)
开发者ID:only4hj,项目名称:DeepRL,代码行数:104,代码来源:model_neon.py


注:本文中的neon.models.Model.save_params方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。