当前位置: 首页>>代码示例>>Python>>正文


Python Segment.file_origin方法代码示例

本文整理汇总了Python中neo.core.Segment.file_origin方法的典型用法代码示例。如果您正苦于以下问题:Python Segment.file_origin方法的具体用法?Python Segment.file_origin怎么用?Python Segment.file_origin使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在neo.core.Segment的用法示例。


在下文中一共展示了Segment.file_origin方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: read_segment

# 需要导入模块: from neo.core import Segment [as 别名]
# 或者: from neo.core.Segment import file_origin [as 别名]
    def read_segment(self, lazy=False, cascade=True, load_spike_waveform=True):
        """
        Read in a segment.

        Arguments:
            load_spike_waveform : load or not waveform of spikes (default True)

        """

        fid = open(self.filename, 'rb')
        globalHeader = HeaderReader(fid, GlobalHeader).read_f(offset=0)

        # metadatas
        seg = Segment()
        seg.rec_datetime = datetime.datetime(
            globalHeader.pop('Year'),
            globalHeader.pop('Month'),
            globalHeader.pop('Day'),
            globalHeader.pop('Hour'),
            globalHeader.pop('Minute'),
            globalHeader.pop('Second')
        )
        seg.file_origin = os.path.basename(self.filename)

        for key, val in globalHeader.iteritems():
            seg.annotate(**{key: val})

        if not cascade:
            return seg

        ## Step 1 : read headers
        # dsp channels header = spikes and waveforms
        dspChannelHeaders = {}
        maxunit = 0
        maxchan = 0
        for _ in range(globalHeader['NumDSPChannels']):
            # channel is 1 based
            channelHeader = HeaderReader(fid, ChannelHeader).read_f(offset=None)
            channelHeader['Template'] = np.array(channelHeader['Template']).reshape((5,64))
            channelHeader['Boxes'] = np.array(channelHeader['Boxes']).reshape((5,2,4))
            dspChannelHeaders[channelHeader['Channel']] = channelHeader
            maxunit = max(channelHeader['NUnits'], maxunit)
            maxchan = max(channelHeader['Channel'], maxchan)

        # event channel header
        eventHeaders = { }
        for _ in range(globalHeader['NumEventChannels']):
            eventHeader = HeaderReader(fid, EventHeader).read_f(offset=None)
            eventHeaders[eventHeader['Channel']] = eventHeader

        # slow channel header = signal
        slowChannelHeaders = {}
        for _ in range(globalHeader['NumSlowChannels']):
            slowChannelHeader = HeaderReader(fid, SlowChannelHeader).read_f(offset=None)
            slowChannelHeaders[slowChannelHeader['Channel']] = slowChannelHeader

        ## Step 2 : a first loop for counting size
        # signal
        nb_samples = np.zeros(len(slowChannelHeaders))
        sample_positions = np.zeros(len(slowChannelHeaders))
        t_starts = np.zeros(len(slowChannelHeaders), dtype='f')

        #spiketimes and waveform
        nb_spikes = np.zeros((maxchan+1, maxunit+1) ,dtype='i')
        wf_sizes = np.zeros((maxchan+1, maxunit+1, 2) ,dtype='i')

        # eventarrays
        nb_events = { }
        #maxstrsizeperchannel = { }
        for chan, h in iteritems(eventHeaders):
            nb_events[chan] = 0
            #maxstrsizeperchannel[chan] = 0

        start = fid.tell()
        while fid.tell() !=-1 :
            # read block header
            dataBlockHeader = HeaderReader(fid , DataBlockHeader ).read_f(offset = None)
            if dataBlockHeader is None : break
            chan = dataBlockHeader['Channel']
            unit = dataBlockHeader['Unit']
            n1,n2 = dataBlockHeader['NumberOfWaveforms'] , dataBlockHeader['NumberOfWordsInWaveform']
            time = (dataBlockHeader['UpperByteOf5ByteTimestamp']*2.**32 +
                    dataBlockHeader['TimeStamp'])

            if dataBlockHeader['Type'] == 1:
                nb_spikes[chan,unit] +=1
                wf_sizes[chan,unit,:] = [n1,n2]
                fid.seek(n1*n2*2,1)
            elif dataBlockHeader['Type'] ==4:
                #event
                nb_events[chan] += 1
            elif dataBlockHeader['Type'] == 5:
                #continuous signal
                fid.seek(n2*2, 1)
                if n2> 0:
                    nb_samples[chan] += n2
                if nb_samples[chan] ==0:
                    t_starts[chan] = time
                    

#.........这里部分代码省略.........
开发者ID:bal47,项目名称:python-neo,代码行数:103,代码来源:plexonio.py

示例2: read_block

# 需要导入模块: from neo.core import Segment [as 别名]
# 或者: from neo.core.Segment import file_origin [as 别名]
    def read_block(self,
                   # the 2 first keyword arguments are imposed by neo.io API
                   lazy = False,
                   cascade = True):
        """
        Return a Block.

        """

        def count_samples(m_length):
            """
            Count the number of signal samples available in a type 5 data block
            of length m_length

            """

            # for information about type 5 data block, see [1]
            count = int((m_length-6)/2-2)
            # -6 corresponds to the header of block 5, and the -2 take into
            # account the fact that last 2 values are not available as the 4
            # corresponding bytes are coding the time stamp of the beginning
            # of the block
            return count

        # create the neo Block that will be returned at the end
        blck = Block(file_origin = os.path.basename(self.filename))
        blck.file_origin = os.path.basename(self.filename)

        fid = open(self.filename, 'rb')

        # NOTE: in the following, the word "block" is used in the sense used in
        # the alpha-omega specifications (ie a data chunk in the file), rather
        # than in the sense of the usual Block object in neo

        # step 1: read the headers of all the data blocks to load the file
        # structure

        pos_block = 0 # position of the current block in the file
        file_blocks = [] # list of data blocks available in the file

        if not cascade:
            # we read only the main header

            m_length, m_TypeBlock = struct.unpack('Hcx' , fid.read(4))
            # m_TypeBlock should be 'h', as we read the first block
            block = HeaderReader(fid,
                                 dict_header_type.get(m_TypeBlock,
                                                      Type_Unknown)).read_f()
            block.update({'m_length': m_length,
                          'm_TypeBlock': m_TypeBlock,
                          'pos': pos_block})
            file_blocks.append(block)

        else: # cascade == True

            seg = Segment(file_origin = os.path.basename(self.filename))
            seg.file_origin = os.path.basename(self.filename)
            blck.segments.append(seg)

            while True:
                first_4_bytes = fid.read(4)
                if len(first_4_bytes) < 4:
                    # we have reached the end of the file
                    break
                else:
                    m_length, m_TypeBlock = struct.unpack('Hcx', first_4_bytes)

                block = HeaderReader(fid,
                                dict_header_type.get(m_TypeBlock,
                                                     Type_Unknown)).read_f()
                block.update({'m_length': m_length,
                              'm_TypeBlock': m_TypeBlock,
                              'pos': pos_block})

                if m_TypeBlock == '2':
                    # The beginning of the block of type '2' is identical for
                    # all types of channels, but the following part depends on
                    # the type of channel. So we need a special case here.

                    # WARNING: How to check the type of channel is not
                    # described in the documentation. So here I use what is
                    # proposed in the C code [2].
                    # According to this C code, it seems that the 'm_isAnalog'
                    # is used to distinguished analog and digital channels, and
                    # 'm_Mode' encodes the type of analog channel:
                    # 0 for continuous, 1 for level, 2 for external trigger.
                    # But in some files, I found channels that seemed to be
                    # continuous channels with 'm_Modes' = 128 or 192. So I
                    # decided to consider every channel with 'm_Modes'
                    # different from 1 or 2 as continuous. I also couldn't
                    # check that values of 1 and 2 are really for level and
                    # external trigger as I had no test files containing data
                    # of this types.

                    type_subblock = 'unknown_channel_type(m_Mode=' \
                                    + str(block['m_Mode'])+ ')'
                    description = Type2_SubBlockUnknownChannels
                    block.update({'m_Name': 'unknown_name'})
                    if block['m_isAnalog'] == 0:
                        # digital channel
#.........这里部分代码省略.........
开发者ID:CINPLA,项目名称:python-neo,代码行数:103,代码来源:alphaomegaio.py

示例3: read_segment

# 需要导入模块: from neo.core import Segment [as 别名]
# 或者: from neo.core.Segment import file_origin [as 别名]
    def read_segment(self, lazy=False, cascade=True):
        fid = open(self.filename, 'rb')
        global_header = HeaderReader(fid, GlobalHeader).read_f(offset=0)
        # ~ print globalHeader
        #~ print 'version' , globalHeader['version']
        seg = Segment()
        seg.file_origin = os.path.basename(self.filename)
        seg.annotate(neuroexplorer_version=global_header['version'])
        seg.annotate(comment=global_header['comment'])

        if not cascade:
            return seg

        offset = 544
        for i in range(global_header['nvar']):
            entity_header = HeaderReader(fid, EntityHeader).read_f(
                offset=offset + i * 208)
            entity_header['name'] = entity_header['name'].replace('\x00', '')

            #print 'i',i, entityHeader['type']

            if entity_header['type'] == 0:
                # neuron
                if lazy:
                    spike_times = [] * pq.s
                else:
                    spike_times = np.memmap(self.filename, np.dtype('i4'), 'r',
                                            shape=(entity_header['n']),
                                            offset=entity_header['offset'])
                    spike_times = spike_times.astype('f8') / global_header[
                        'freq'] * pq.s
                sptr = SpikeTrain(
                    times=spike_times,
                    t_start=global_header['tbeg'] /
                    global_header['freq'] * pq.s,
                    t_stop=global_header['tend'] /
                    global_header['freq'] * pq.s,
                    name=entity_header['name'])
                if lazy:
                    sptr.lazy_shape = entity_header['n']
                sptr.annotate(channel_index=entity_header['WireNumber'])
                seg.spiketrains.append(sptr)

            if entity_header['type'] == 1:
                # event
                if lazy:
                    event_times = [] * pq.s
                else:
                    event_times = np.memmap(self.filename, np.dtype('i4'), 'r',
                                            shape=(entity_header['n']),
                                            offset=entity_header['offset'])
                    event_times = event_times.astype('f8') / global_header[
                        'freq'] * pq.s
                labels = np.array([''] * event_times.size, dtype='S')
                evar = Event(times=event_times, labels=labels,
                             channel_name=entity_header['name'])
                if lazy:
                    evar.lazy_shape = entity_header['n']
                seg.events.append(evar)

            if entity_header['type'] == 2:
                # interval
                if lazy:
                    start_times = [] * pq.s
                    stop_times = [] * pq.s
                else:
                    start_times = np.memmap(self.filename, np.dtype('i4'), 'r',
                                            shape=(entity_header['n']),
                                            offset=entity_header['offset'])
                    start_times = start_times.astype('f8') / global_header[
                        'freq'] * pq.s
                    stop_times = np.memmap(self.filename, np.dtype('i4'), 'r',
                                           shape=(entity_header['n']),
                                           offset=entity_header['offset'] +
                                           entity_header['n'] * 4)
                    stop_times = stop_times.astype('f') / global_header[
                        'freq'] * pq.s
                epar = Epoch(times=start_times,
                             durations=stop_times - start_times,
                             labels=np.array([''] * start_times.size,
                                             dtype='S'),
                             channel_name=entity_header['name'])
                if lazy:
                    epar.lazy_shape = entity_header['n']
                seg.epochs.append(epar)

            if entity_header['type'] == 3:
                # spiketrain and wavefoms
                if lazy:
                    spike_times = [] * pq.s
                    waveforms = None
                else:

                    spike_times = np.memmap(self.filename, np.dtype('i4'), 'r',
                                            shape=(entity_header['n']),
                                            offset=entity_header['offset'])
                    spike_times = spike_times.astype('f8') / global_header[
                        'freq'] * pq.s

                    waveforms = np.memmap(self.filename, np.dtype('i2'), 'r',
#.........这里部分代码省略.........
开发者ID:Silmathoron,项目名称:python-neo,代码行数:103,代码来源:neuroexplorerio.py

示例4: read_segment

# 需要导入模块: from neo.core import Segment [as 别名]
# 或者: from neo.core.Segment import file_origin [as 别名]
    def read_segment(self, lazy=False, cascade=True, load_spike_waveform=True):
        """

        """

        fid = open(self.filename, "rb")
        globalHeader = HeaderReader(fid, GlobalHeader).read_f(offset=0)

        # metadatas
        seg = Segment()
        seg.rec_datetime = datetime.datetime(
            globalHeader["Year"],
            globalHeader["Month"],
            globalHeader["Day"],
            globalHeader["Hour"],
            globalHeader["Minute"],
            globalHeader["Second"],
        )
        seg.file_origin = os.path.basename(self.filename)
        seg.annotate(plexon_version=globalHeader["Version"])

        if not cascade:
            return seg

        ## Step 1 : read headers
        # dsp channels header = sipkes and waveforms
        dspChannelHeaders = {}
        maxunit = 0
        maxchan = 0
        for _ in range(globalHeader["NumDSPChannels"]):
            # channel is 1 based
            channelHeader = HeaderReader(fid, ChannelHeader).read_f(offset=None)
            channelHeader["Template"] = np.array(channelHeader["Template"]).reshape((5, 64))
            channelHeader["Boxes"] = np.array(channelHeader["Boxes"]).reshape((5, 2, 4))
            dspChannelHeaders[channelHeader["Channel"]] = channelHeader
            maxunit = max(channelHeader["NUnits"], maxunit)
            maxchan = max(channelHeader["Channel"], maxchan)

        # event channel header
        eventHeaders = {}
        for _ in range(globalHeader["NumEventChannels"]):
            eventHeader = HeaderReader(fid, EventHeader).read_f(offset=None)
            eventHeaders[eventHeader["Channel"]] = eventHeader

        # slow channel header = signal
        slowChannelHeaders = {}
        for _ in range(globalHeader["NumSlowChannels"]):
            slowChannelHeader = HeaderReader(fid, SlowChannelHeader).read_f(offset=None)
            slowChannelHeaders[slowChannelHeader["Channel"]] = slowChannelHeader

        ## Step 2 : a first loop for counting size
        # signal
        nb_samples = np.zeros(len(slowChannelHeaders))
        sample_positions = np.zeros(len(slowChannelHeaders))
        t_starts = np.zeros(len(slowChannelHeaders), dtype="f")

        # spiketimes and waveform
        nb_spikes = np.zeros((maxchan + 1, maxunit + 1), dtype="i")
        wf_sizes = np.zeros((maxchan + 1, maxunit + 1, 2), dtype="i")

        # eventarrays
        nb_events = {}
        # maxstrsizeperchannel = { }
        for chan, h in iteritems(eventHeaders):
            nb_events[chan] = 0
            # maxstrsizeperchannel[chan] = 0

        start = fid.tell()
        while fid.tell() != -1:
            # read block header
            dataBlockHeader = HeaderReader(fid, DataBlockHeader).read_f(offset=None)
            if dataBlockHeader is None:
                break
            chan = dataBlockHeader["Channel"]
            unit = dataBlockHeader["Unit"]
            n1, n2 = dataBlockHeader["NumberOfWaveforms"], dataBlockHeader["NumberOfWordsInWaveform"]
            time = dataBlockHeader["UpperByteOf5ByteTimestamp"] * 2.0 ** 32 + dataBlockHeader["TimeStamp"]

            if dataBlockHeader["Type"] == 1:
                nb_spikes[chan, unit] += 1
                wf_sizes[chan, unit, :] = [n1, n2]
                fid.seek(n1 * n2 * 2, 1)
            elif dataBlockHeader["Type"] == 4:
                # event
                nb_events[chan] += 1
            elif dataBlockHeader["Type"] == 5:
                # continuous signal
                fid.seek(n2 * 2, 1)
                if n2 > 0:
                    nb_samples[chan] += n2
                if nb_samples[chan] == 0:
                    t_starts[chan] = time

        ## Step 3: allocating memory and 2 loop for reading if not lazy
        if not lazy:
            # allocating mem for signal
            sigarrays = {}
            for chan, h in iteritems(slowChannelHeaders):
                sigarrays[chan] = np.zeros(nb_samples[chan])

#.........这里部分代码省略.........
开发者ID:toddrjen,项目名称:python-neo,代码行数:103,代码来源:plexonio.py


注:本文中的neo.core.Segment.file_origin方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。