当前位置: 首页>>代码示例>>Python>>正文


Python Segment.analogsignals方法代码示例

本文整理汇总了Python中neo.core.Segment.analogsignals方法的典型用法代码示例。如果您正苦于以下问题:Python Segment.analogsignals方法的具体用法?Python Segment.analogsignals怎么用?Python Segment.analogsignals使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在neo.core.Segment的用法示例。


在下文中一共展示了Segment.analogsignals方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test__children

# 需要导入模块: from neo.core import Segment [as 别名]
# 或者: from neo.core.Segment import analogsignals [as 别名]
    def test__children(self):
        signal = self.signals[0]

        segment = Segment(name='seg1')
        segment.analogsignals = [signal]
        segment.create_many_to_one_relationship()

        chx = ChannelIndex(name='chx1', index=np.arange(signal.shape[1]))
        chx.analogsignals = [signal]
        chx.create_many_to_one_relationship()

        self.assertEqual(signal._single_parent_objects, ('Segment', 'ChannelIndex'))
        self.assertEqual(signal._multi_parent_objects, ())

        self.assertEqual(signal._single_parent_containers, ('segment', 'channel_index'))
        self.assertEqual(signal._multi_parent_containers, ())

        self.assertEqual(signal._parent_objects, ('Segment', 'ChannelIndex'))
        self.assertEqual(signal._parent_containers, ('segment', 'channel_index'))

        self.assertEqual(len(signal.parents), 2)
        self.assertEqual(signal.parents[0].name, 'seg1')
        self.assertEqual(signal.parents[1].name, 'chx1')

        assert_neo_object_is_compliant(signal)
开发者ID:INM-6,项目名称:python-neo,代码行数:27,代码来源:test_analogsignalarray.py

示例2: test__children

# 需要导入模块: from neo.core import Segment [as 别名]
# 或者: from neo.core.Segment import analogsignals [as 别名]
    def test__children(self):
        signal = self.signals[0]

        segment = Segment(name='seg1')
        segment.analogsignals = [signal]
        segment.create_many_to_one_relationship()

        rchan = RecordingChannel(name='rchan1')
        rchan.analogsignals = [signal]
        rchan.create_many_to_one_relationship()

        self.assertEqual(signal._single_parent_objects,
                         ('Segment', 'RecordingChannel'))
        self.assertEqual(signal._multi_parent_objects, ())

        self.assertEqual(signal._single_parent_containers,
                         ('segment', 'recordingchannel'))
        self.assertEqual(signal._multi_parent_containers, ())

        self.assertEqual(signal._parent_objects,
                         ('Segment', 'RecordingChannel'))
        self.assertEqual(signal._parent_containers,
                         ('segment', 'recordingchannel'))

        self.assertEqual(len(signal.parents), 2)
        self.assertEqual(signal.parents[0].name, 'seg1')
        self.assertEqual(signal.parents[1].name, 'rchan1')

        assert_neo_object_is_compliant(signal)
开发者ID:ChrisNolan1992,项目名称:python-neo,代码行数:31,代码来源:test_analogsignal.py

示例3: proc_dam

# 需要导入模块: from neo.core import Segment [as 别名]
# 或者: from neo.core.Segment import analogsignals [as 别名]
def proc_dam(filename):
    '''Load an dam file that has already been processed by the official matlab
    file converter.  That matlab data is saved to an m-file, which is then
    converted to a numpy '.npz' file.  This numpy file is the file actually
    loaded.  This function converts it to a neo block and returns the block.
    This block can be compared to the block produced by BrainwareDamIO to
    make sure BrainwareDamIO is working properly

    block = proc_dam(filename)

    filename: The file name of the numpy file to load.  It should end with
    '*_dam_py?.npz'. This will be converted to a neo 'file_origin' property
    with the value '*.dam', so the filename to compare should fit that pattern.
    'py?' should be 'py2' for the python 2 version of the numpy file or 'py3'
    for the python 3 version of the numpy file.

    example: filename = 'file1_dam_py2.npz'
             dam file name = 'file1.dam'
    '''
    with np.load(filename) as damobj:
        damfile = damobj.items()[0][1].flatten()

    filename = os.path.basename(filename[:-12]+'.dam')

    signals = [res.flatten() for res in damfile['signal']]
    stimIndexes = [int(res[0, 0].tolist()) for res in damfile['stimIndex']]
    timestamps = [res[0, 0] for res in damfile['timestamp']]

    block = Block(file_origin=filename)

    rcg = RecordingChannelGroup(file_origin=filename)
    chan = RecordingChannel(file_origin=filename, index=0, name='Chan1')
    rcg.channel_indexes = np.array([1])
    rcg.channel_names = np.array(['Chan1'], dtype='S')

    block.recordingchannelgroups.append(rcg)
    rcg.recordingchannels.append(chan)

    params = [res['params'][0, 0].flatten() for res in damfile['stim']]
    values = [res['values'][0, 0].flatten() for res in damfile['stim']]
    params = [[res1[0] for res1 in res] for res in params]
    values = [[res1 for res1 in res] for res in values]
    stims = [dict(zip(param, value)) for param, value in zip(params, values)]

    fulldam = zip(stimIndexes, timestamps, signals, stims)
    for stimIndex, timestamp, signal, stim in fulldam:
        sig = AnalogSignal(signal=signal*pq.mV,
                           t_start=timestamp*pq.d,
                           file_origin=filename,
                           sampling_period=1.*pq.s)
        segment = Segment(file_origin=filename,
                          index=stimIndex,
                          **stim)
        segment.analogsignals = [sig]
        block.segments.append(segment)

    create_many_to_one_relationship(block)

    return block
开发者ID:uservidya,项目名称:python-neo,代码行数:61,代码来源:test_brainwaredamio.py

示例4: _read_segment

# 需要导入模块: from neo.core import Segment [as 别名]
# 或者: from neo.core.Segment import analogsignals [as 别名]
    def _read_segment(self, node, parent):
        attributes = self._get_standard_attributes(node)
        segment = Segment(**attributes)

        signals = []
        for name, child_node in node['analogsignals'].items():
            if "AnalogSignal" in name:
                signals.append(self._read_analogsignal(child_node, parent=segment))
        if signals and self.merge_singles:
            segment.unmerged_analogsignals = signals  # signals will be merged later
            signals = []
        for name, child_node in node['analogsignalarrays'].items():
            if "AnalogSignalArray" in name:
                signals.append(self._read_analogsignalarray(child_node, parent=segment))
        segment.analogsignals = signals

        irr_signals = []
        for name, child_node in node['irregularlysampledsignals'].items():
            if "IrregularlySampledSignal" in name:
                irr_signals.append(self._read_irregularlysampledsignal(child_node, parent=segment))
        if irr_signals and self.merge_singles:
            segment.unmerged_irregularlysampledsignals = irr_signals
            irr_signals = []
        segment.irregularlysampledsignals = irr_signals

        epochs = []
        for name, child_node in node['epochs'].items():
            if "Epoch" in name:
                epochs.append(self._read_epoch(child_node, parent=segment))
        if self.merge_singles:
            epochs = self._merge_data_objects(epochs)
        for name, child_node in node['epocharrays'].items():
            if "EpochArray" in name:
                epochs.append(self._read_epocharray(child_node, parent=segment))
        segment.epochs = epochs

        events = []
        for name, child_node in node['events'].items():
            if "Event" in name:
                events.append(self._read_event(child_node, parent=segment))
        if self.merge_singles:
            events = self._merge_data_objects(events)
        for name, child_node in node['eventarrays'].items():
            if "EventArray" in name:
                events.append(self._read_eventarray(child_node, parent=segment))
        segment.events = events

        spiketrains = []
        for name, child_node in node['spikes'].items():
            raise NotImplementedError('Spike objects not yet handled.')
        for name, child_node in node['spiketrains'].items():
            if "SpikeTrain" in name:
                spiketrains.append(self._read_spiketrain(child_node, parent=segment))
        segment.spiketrains = spiketrains

        segment.block = parent
        return segment
开发者ID:CINPLA,项目名称:python-neo,代码行数:59,代码来源:hdf5io.py

示例5: test__children

# 需要导入模块: from neo.core import Segment [as 别名]
# 或者: from neo.core.Segment import analogsignals [as 别名]
    def test__children(self):
        signal = self.signals[0]

        segment = Segment(name="seg1")
        segment.analogsignals = [signal]
        segment.create_many_to_one_relationship()

        rchan = RecordingChannel(name="rchan1")
        rchan.analogsignals = [signal]
        rchan.create_many_to_one_relationship()

        self.assertEqual(signal._container_child_objects, ())
        self.assertEqual(signal._data_child_objects, ())
        self.assertEqual(signal._single_parent_objects, ("Segment", "RecordingChannel"))
        self.assertEqual(signal._multi_child_objects, ())
        self.assertEqual(signal._multi_parent_objects, ())
        self.assertEqual(signal._child_properties, ())

        self.assertEqual(signal._single_child_objects, ())

        self.assertEqual(signal._container_child_containers, ())
        self.assertEqual(signal._data_child_containers, ())
        self.assertEqual(signal._single_child_containers, ())
        self.assertEqual(signal._single_parent_containers, ("segment", "recordingchannel"))
        self.assertEqual(signal._multi_child_containers, ())
        self.assertEqual(signal._multi_parent_containers, ())

        self.assertEqual(signal._child_objects, ())
        self.assertEqual(signal._child_containers, ())
        self.assertEqual(signal._parent_objects, ("Segment", "RecordingChannel"))
        self.assertEqual(signal._parent_containers, ("segment", "recordingchannel"))

        self.assertEqual(signal.children, ())
        self.assertEqual(len(signal.parents), 2)
        self.assertEqual(signal.parents[0].name, "seg1")
        self.assertEqual(signal.parents[1].name, "rchan1")

        signal.create_many_to_one_relationship()
        signal.create_many_to_many_relationship()
        signal.create_relationship()
        assert_neo_object_is_compliant(signal)
开发者ID:NeuroArchive,项目名称:python-neo,代码行数:43,代码来源:test_analogsignal.py

示例6: _read_segment

# 需要导入模块: from neo.core import Segment [as 别名]
# 或者: from neo.core.Segment import analogsignals [as 别名]
    def _read_segment(self, fobject, lazy):
        """
        Read a single segment with a single analogsignal

        Returns the segment or None if there are no more segments
        """

        try:
            # float64 -- start time of the AnalogSignal
            t_start = np.fromfile(fobject, dtype=np.float64, count=1)[0]
        except IndexError:
            # if there are no more Segments, return
            return False

        # int16 -- index of the stimulus parameters
        seg_index = np.fromfile(fobject, dtype=np.int16, count=1)[0].tolist()

        # int16 -- number of stimulus parameters
        numelements = np.fromfile(fobject, dtype=np.int16, count=1)[0]

        # read the name strings for the stimulus parameters
        paramnames = []
        for _ in range(numelements):
            # unit8 -- the number of characters in the string
            numchars = np.fromfile(fobject, dtype=np.uint8, count=1)[0]

            # char * numchars -- a single name string
            name = np.fromfile(fobject, dtype=np.uint8, count=numchars)

            # exclude invalid characters
            name = str(name[name >= 32].view("c").tostring())

            # add the name to the list of names
            paramnames.append(name)

        # float32 * numelements -- the values for the stimulus parameters
        paramvalues = np.fromfile(fobject, dtype=np.float32, count=numelements)

        # combine parameter names and the parameters as a dict
        params = dict(zip(paramnames, paramvalues))

        # int32 -- the number elements in the AnalogSignal
        numpts = np.fromfile(fobject, dtype=np.int32, count=1)[0]

        # int16 * numpts -- the AnalogSignal itself
        signal = np.fromfile(fobject, dtype=np.int16, count=numpts)

        # handle lazy loading
        if lazy:
            sig = AnalogSignal(
                [],
                t_start=t_start * pq.d,
                file_origin=self._filename,
                sampling_period=1.0 * pq.s,
                units=pq.mV,
                dtype=np.float,
            )
            sig.lazy_shape = len(signal)
        else:
            sig = AnalogSignal(
                signal.astype(np.float) * pq.mV,
                t_start=t_start * pq.d,
                file_origin=self._filename,
                sampling_period=1.0 * pq.s,
                copy=False,
            )
        # Note: setting the sampling_period to 1 s is arbitrary

        # load the AnalogSignal and parameters into a new Segment
        seg = Segment(file_origin=self._filename, index=seg_index, **params)
        seg.analogsignals = [sig]

        return seg
开发者ID:NeuroArchive,项目名称:python-neo,代码行数:75,代码来源:brainwaredamio.py

示例7: read_segment

# 需要导入模块: from neo.core import Segment [as 别名]
# 或者: from neo.core.Segment import analogsignals [as 别名]
    def read_segment(self, gid_list=None, time_unit=pq.ms, t_start=None,
                     t_stop=None, sampling_period=None, id_column_dat=0,
                     time_column_dat=1, value_columns_dat=2,
                     id_column_gdf=0, time_column_gdf=1, value_types=None,
                     value_units=None, lazy=False):
        """
        Reads a Segment which contains SpikeTrain(s) with specified neuron IDs
        from the GDF data.

        Arguments
        ----------
        gid_list : list, default: None
            A list of GDF IDs of which to return SpikeTrain(s). gid_list must
            be specified if the GDF file contains neuron IDs, the default None
            then raises an error. Specify an empty list [] to retrieve the spike
            trains of all neurons.
        time_unit : Quantity (time), optional, default: quantities.ms
            The time unit of recorded time stamps in DAT as well as GDF files.
        t_start : Quantity (time), optional, default: 0 * pq.ms
            Start time of SpikeTrain.
        t_stop : Quantity (time), default: None
            Stop time of SpikeTrain. t_stop must be specified, the default None
            raises an error.
        sampling_period : Quantity (frequency), optional, default: None
            Sampling period of the recorded data.
        id_column_dat : int, optional, default: 0
            Column index of neuron IDs in the DAT file.
        time_column_dat : int, optional, default: 1
            Column index of time stamps in the DAT file.
        value_columns_dat : int, optional, default: 2
            Column index of the analog values recorded in the DAT file.
        id_column_gdf : int, optional, default: 0
            Column index of neuron IDs in the GDF file.
        time_column_gdf : int, optional, default: 1
            Column index of time stamps in the GDF file.
        value_types : str, optional, default: None
            Nest data type of the analog values recorded, eg.'V_m', 'I', 'g_e'
        value_units : Quantity (amplitude), default: None
            The physical unit of the recorded signal values.
        lazy : bool, optional, default: False

        Returns
        -------
        seg : Segment
            The Segment contains one SpikeTrain and one AnalogSignal for
            each ID in gid_list.
        """
        assert not lazy, 'Do not support lazy'

        if isinstance(gid_list, tuple):
            if gid_list[0] > gid_list[1]:
                raise ValueError('The second entry in gid_list must be '
                                 'greater or equal to the first entry.')
            gid_list = range(gid_list[0], gid_list[1] + 1)

        # __read_xxx() needs a list of IDs
        if gid_list is None:
            gid_list = [None]

        # create an empty Segment
        seg = Segment(file_origin=",".join(self.filenames))
        seg.file_datetime = datetime.fromtimestamp(os.stat(self.filenames[0]).st_mtime)
        # todo: rather than take the first file for the timestamp, we should take the oldest
        #       in practice, there won't be much difference

        # Load analogsignals and attach to Segment
        if 'dat' in self.avail_formats:
            seg.analogsignals = self.__read_analogsignals(
                gid_list,
                time_unit,
                t_start,
                t_stop,
                sampling_period=sampling_period,
                id_column=id_column_dat,
                time_column=time_column_dat,
                value_columns=value_columns_dat,
                value_types=value_types,
                value_units=value_units)
        if 'gdf' in self.avail_formats:
            seg.spiketrains = self.__read_spiketrains(
                gid_list,
                time_unit,
                t_start,
                t_stop,
                id_column=id_column_gdf,
                time_column=time_column_gdf)

        return seg
开发者ID:INM-6,项目名称:python-neo,代码行数:90,代码来源:nestio.py


注:本文中的neo.core.Segment.analogsignals方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。