当前位置: 首页>>代码示例>>Python>>正文


Python Manager.dict方法代码示例

本文整理汇总了Python中multiprocessing.Manager.dict方法的典型用法代码示例。如果您正苦于以下问题:Python Manager.dict方法的具体用法?Python Manager.dict怎么用?Python Manager.dict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在multiprocessing.Manager的用法示例。


在下文中一共展示了Manager.dict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: line_integration

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
def line_integration(rmid):
    print("Begin process for " + str(rmid))
    mjd_list = map(int, os.listdir(Location.project_loca + "data/raw/" +
                                   str(rmid)))
    os.chdir(Location.project_loca + "/result/flux_of_line/")
    try:
        os.mkdir(str(rmid))
    except OSError:
        pass
    pool = Pool(processes=32)
    m = Manager()
    lock = m.Lock()
    fe2dic = m.dict()
    hbetandic = m.dict()
    hbetabdic = m.dict()
    o3dic = m.dict()
    contdic = m.dict()
    func = partial(line_integration_single, rmid, lock, fe2dic, hbetandic,
                   hbetabdic, o3dic, contdic)
    pool.map(func, mjd_list)
    output_flux(rmid, dict(fe2dic), "Fe2")
    output_flux(rmid, dict(hbetandic), "Hbetan")
    output_flux(rmid, dict(hbetabdic), "Hbetab")
    output_flux(rmid, dict(contdic), "cont")
    output_flux(rmid, dict(o3dic), "O3")
    pool.close()
    pool.join()
开发者ID:chengxinlun,项目名称:fundamental-plane,代码行数:29,代码来源:line_integration.py

示例2: build_av_tf_idf_dv

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
def build_av_tf_idf_dv(docs, doc_num, model, save=True, save_file="doc_vector_tfidf.bin"):
    docs = list(docs)
    vectorizer = CountVectorizer()
    tfidf_transformer = TfidfTransformer()
    count_fv = vectorizer.fit_transform(util.word2sentence(docs))
    tfidf_fv = tfidf_transformer.fit_transform(count_fv)

    num_features = model.syn0.shape[1]

    manager = Manager()
    global_word_set = manager.dict(util.get_word_vec_dict(model))
    global_vocabulary = manager.dict(vectorizer.vocabulary_);
    global_doc_vector = mp.Array('d', doc_num*num_features, lock=False)

    pool = mp.Pool(initializer=initprocess, initargs=[global_doc_vector])

    index = 0
    # test(docs[0], global_word_set, 0, doc_num, global_vocabulary, global_doc_vector, global_tfidf_fv)
    for words in docs:
        pool.apply_async(single_av_tf_idf_dv, [words, global_word_set, index, doc_num, global_vocabulary, tfidf_fv[index]])
        index += 1

    pool.close()
    pool.join()

    doc_vector = np.frombuffer(global_doc_vector).reshape((doc_num, num_features))
    if save:
        np.save(save_file, doc_vector)
    return doc_vector
开发者ID:Crazyconv,项目名称:Word2Vec2NLP,代码行数:31,代码来源:docvector_parallel_Deprecated.py

示例3: __init__

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
 def __init__(self, config):
     '''*config* can be obtained from the function :func:`cloudfusion.store.sugarsync.sugarsync_store.SugarsyncStore.get_config`,
     but you need to add user and password::
     
         config = SugarsyncStore.get_config()
         config['user'] = '[email protected]' #your account username/e-mail address
         config['password'] = 'MySecret!23$' #your account password
     
     Or you can use a configuration file that already has password and username set by specifying a path::
     
         path_to_my_config_file = '/home/joe/MySugarsync.ini'       
         config = get_config(path_to_my_config_file)
     
     :param config: dictionary with key value pairs'''
     #self.dir_listing_cache = {}
     self._logging_handler = 'sugarsync'
     self.logger = logging.getLogger(self._logging_handler)
     self.logger = db_logging_thread.make_logger_multiprocessingsave(self.logger)
     manager = Manager()
     self.path_cache = manager.dict()
     # use a lock for synchronized appends
     self._dir_listing_cache = manager.dict()
     self._dir_listing_cache_lock = RLock()
     self._last_partial_cache = manager.list()
     self._time_of_last_partial_cache = 0
     #error handling for authorization error
     self.root = config["root"]
     try:
         self.client = SugarsyncClient(config)
     except Exception, e:
         raise StoreAutorizationError(repr(e), 0)
开发者ID:PavilionVI,项目名称:CloudFusion,代码行数:33,代码来源:sugarsync_store.py

示例4: process_job_parallel

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
def process_job_parallel(scheduler, job, nr_cores, nr_iter, parameters = None):
    Logger.log_level = 2
    processes = []
    manager = Manager()
    return_values = manager.dict()
    extremes = manager.dict()
    start_time = datetime.datetime.now()
    for i in range(nr_cores):
        p = Process(target=worker, args=(i, nr_cores, scheduler, job, nr_iter, return_values, extremes, parameters,))
        processes.append(p)
        p.start()

    for process in processes:
        process.join()

    #reduce
    results = []
    for value in return_values.values():
        for entry in value:
            results.append(entry)

    min = None
    max = None

    for extreme in extremes.values():
        if min is None or extreme[0].total_time < min.total_time:
            min = extreme[0]
        if max is None or extreme[1].total_time > max.total_time:
            max = extreme[1]
    Logger.warning("Min: %s" % min.total_time)
    Logger.warning("Max: %s" % max.total_time)

    duration = datetime.datetime.now() - start_time
    Logger.warning("Simulation  complete. Duration: %s" % (duration))
    return results, (min,max)
开发者ID:juliusf,项目名称:Genetic-SRCPSP,代码行数:37,代码来源:multicoreSimulation.py

示例5: run

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
def run():
    # build the mdp
    start = time.time()
    room_size = 3
    num_rooms = 5
    mdp = maze_mdp.MazeMDP(room_size=room_size, num_rooms=num_rooms)

    # build the agent
    m = Manager()
    init_dict = {(s, a): 0 for s in mdp.states for a in mdp.ACTIONS + [None]}
    shared_weights = m.dict(init_dict)
    shared_value_weights = m.dict(init_dict)
    agent = async_actor_critic.AsyncActorCritic(actions=mdp.ACTIONS, discount=mdp.DISCOUNT, 
        weights=shared_weights, value_weights=shared_value_weights, tau=.3, learning_rate=.5)

    # build a single experiment
    rewards = m.list()
    start_state_values = m.list()
    max_steps = (2 * room_size * num_rooms) ** 2
    exp = experiment.Experiment(mdp=mdp, agent=agent, num_episodes=800, max_steps=max_steps,
        rewards=rewards, start_state_values=start_state_values)

    # run the experiment
    multiexperiment = experiment.MultiProcessExperiment(experiment=exp, num_agents=NUM_PROCESSES)
    multiexperiment.run()

    # report results
    end = time.time()
    print 'took {} seconds to converge'.format(end - start)
    mdp.print_state_values(shared_value_weights)
    optimal = mdp.EXIT_REWARD + (2 * room_size * num_rooms * mdp.MOVE_REWARD)
    utils.plot_values(rewards, optimal, 'rewards')
    utils.plot_values(start_state_values, optimal, 'start state value')
开发者ID:jialrs,项目名称:async_rl,代码行数:35,代码来源:run_experiement.py

示例6: main_parallel

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
def main_parallel():
    Component.resetPfKeeping()
    Component.resetCostKeeping()

    manager = Manager()
    Component.pfkeeping = manager.dict(Component.pfkeeping)
    Component.costkeeping = manager.dict(Component.costkeeping)

    pool = Pool(processes=3)
    toolbox.register("map", pool.map)

    print "MULTIOBJECTIVE OPTIMIZATION: parallel version"
    start_delta_time = time.time()

    # optimization
    random.seed(64)

    npop = 100
    ngen = 50

    stats = tools.Statistics(key=lambda ind: ind.fitness.values)
    stats.register("avg", np.mean, axis=0)
    stats.register("std", np.std, axis=0)
    stats.register("min", np.min, axis=0)
    stats.register("max", np.max, axis=0)
    logbook = tools.Logbook()
    logbook.header = "gen", "evals", "avg", "std", "min", "max"

    pop = toolbox.population(n=npop)
    fits = toolbox.map(toolbox.evaluate, pop)
    for fit,ind in zip(fits, pop):
        ind.fitness.values = fit

    nevals = npop
    allpop = []
    for gen in range(ngen):
        allpop = allpop+pop
        record = stats.compile(pop)
        logbook.record(gen=gen, evals=nevals, **record)
        print(logbook.stream)

        offspring = algorithms.varOr(pop, toolbox, lambda_=npop, cxpb=0.5, mutpb=0.1)
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        nevals = len(invalid_ind)
        fits = toolbox.map(toolbox.evaluate, invalid_ind)
        for fit,ind in zip(fits, invalid_ind):
            ind.fitness.values = fit
        pop = toolbox.select(offspring+pop, k=npop)

    front = toolbox.sort(allpop, k=int(ngen*npop), first_front_only=True)

    pool.close()
    pool.join()

    delta_time = time.time() - start_delta_time
    print 'DONE: {} s'.format(str(datetime.timedelta(seconds=delta_time)))

    return allpop, logbook, front
开发者ID:cedavidyang,项目名称:Life_Cycle_Management_Optimization,代码行数:60,代码来源:optimiazation_examples.py

示例7: launch_multiprocess

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
def launch_multiprocess(launchpad, fworker, loglvl, nlaunches, num_jobs, sleep_time,
                        total_node_list=None, ppn=1, timeout=None, exclude_current_node=False,
                        local_redirect=False):
    """
    Launch the jobs in the job packing mode.

    Args:
        launchpad (LaunchPad)
        fworker (FWorker)
        loglvl (str): level at which to output logs
        nlaunches (int): 0 means 'until completion', -1 or "infinite" means to loop forever
        num_jobs(int): number of sub jobs
        sleep_time (int): secs to sleep between rapidfire loop iterations
        total_node_list ([str]): contents of NODEFILE (doesn't affect execution)
        ppn (int): processors per node (doesn't affect execution)
        timeout (int): # of seconds after which to stop the rapidfire process
        exclude_current_node: Don't use the script launching node as a compute node
        local_redirect (bool): redirect standard input and output to local file
    """
    # parse node file contents
    if exclude_current_node:
        host = get_my_host()
        l_dir = launchpad.get_logdir() if launchpad else None
        l_logger = get_fw_logger('rocket.launcher', l_dir=l_dir, stream_level=loglvl)
        if host in total_node_list:
            log_multi(l_logger, "Remove the current node \"{}\" from compute node".format(host))
            total_node_list.remove(host)
        else:
            log_multi(l_logger, "The current node is not in the node list, keep the node list as is")
    node_lists, sub_nproc_list = split_node_lists(num_jobs, total_node_list, ppn)

    # create shared dataserver
    ds = DataServer.setup(launchpad)
    port = ds.address[1]

    manager = Manager()
    running_ids_dict = manager.dict()
    firing_state_dict = manager.dict()

    # launch rapidfire processes
    processes = start_rockets(fworker, nlaunches, sleep_time, loglvl, port, node_lists,
                              sub_nproc_list, timeout=timeout, running_ids_dict=running_ids_dict,
                              local_redirect=local_redirect, firing_state_dict=firing_state_dict)
    FWData().Running_IDs = running_ids_dict
    FWData().FiringState = firing_state_dict

    # start pinging service
    ping_stop = threading.Event()
    ping_thread = threading.Thread(target=ping_multilaunch, args=(port, ping_stop))
    ping_thread.start()

    # wait for completion
    for p in processes:
        p.join()
    ping_stop.set()
    ping_thread.join()
    ds.shutdown()
开发者ID:xhqu1981,项目名称:fireworks,代码行数:59,代码来源:multi_launcher.py

示例8: main

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
def main():
	parser = argparse.ArgumentParser(description='Takes deduplicated bam files and preprocess\'s for analysis\n')
	parser.add_argument('-c', '--config', help='Conditions containing Sam/Bam files, values are naming', required=True)
	parser.add_argument('-g', '--genome', help='Genome the samples are aligned to, options include	 mm10/mm9/hg19', required=True)
	parser.add_argument('-o', '--outdir', help='Output directory, will create transdense, nfree and npres directories', required=True)
	parser.add_argument('-t', '--threads', help='threads, default=1', default=1, required=False)
	parser.add_argument('-b', action='store_true', help='Use if Config contains bam files', required=False) 
	parser.add_argument('-n', action='store_true', help='Runs just nfree <60 and >60', required=False) 
	if len(sys.argv)==1:
		parser.print_help()
		sys.exit(1)
	args = vars(parser.parse_args())

	Config = ConfigParser.ConfigParser()
	Config.optionxform = str
	Config.read(args["config"])
	conditions = ConfigSectionMap("Conditions", Config)

	chrom = pkg_resources.resource_filename('pyatactools', 'data/{}.chrom.sizes'.format(args["genome"]))
	if not os.path.isfile(chrom):
		raise Exception("Unsupported Genome!")

	transdense_dir = os.path.join(args["outdir"], "transdense")
	nfree_dir = os.path.join(args["outdir"], "nfree")
	npres_dir = os.path.join(args["outdir"], "npres")
	pool = Pool(int(args["threads"]))

	if not os.path.isdir(transdense_dir):
		os.makedirs(transdense_dir)
		os.makedirs(nfree_dir)
		os.makedirs(npres_dir)
	
	ddup_bams = list(conditions.keys())
	if args["n"]:
		manager = Manager()
		return_dict = manager.dict()
		pool = Pool(int(args["threads"]))
		return_dict = manager.dict()
		nfree_dir1 = os.path.join(args["outdir"], "nfree_small")
		nfree_dir2 = os.path.join(args["outdir"], "nfree_large")
		if not os.path.isdir(nfree_dir1):
			os.makedirs(nfree_dir1)
			os.makedirs(nfree_dir2)
		pool.map(function5, itertools.izip(ddup_bams, itertools.repeat(nfree_dir1),itertools.repeat(nfree_dir2), itertools.repeat(return_dict)))
		pool.map(function4, itertools.izip(list(return_dict.keys()), itertools.repeat(chrom)))
	else:
		manager = Manager()
		return_dict = manager.dict()
		pool = Pool(int(args["threads"]))
		pool.map(function1, itertools.izip(ddup_bams, itertools.repeat(transdense_dir), itertools.repeat(return_dict)))
		pool.map(function4, itertools.izip(list(return_dict.keys()), itertools.repeat(chrom)))
		return_dict = manager.dict()
		pool.map(function2, itertools.izip(ddup_bams, itertools.repeat(nfree_dir), itertools.repeat(return_dict)))
		pool.map(function4, itertools.izip(list(return_dict.keys()), itertools.repeat(chrom)))
		return_dict = manager.dict()
		pool.map(function3, itertools.izip(ddup_bams, itertools.repeat(npres_dir), itertools.repeat(return_dict)))
		pool.map(function4, itertools.izip(list(return_dict.keys()), itertools.repeat(chrom)))
开发者ID:mxenoph,项目名称:pyatactools,代码行数:59,代码来源:atac_start.py

示例9: plot_utrs

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
def plot_utrs(conditions, rev_conds, outdir):
	pool = Pool(24)
	manager = Manager()
	return_dict = manager.dict()
	genes = manager.dict()
	pool.map(function1, itertools.izip(list(conditions.keys()), itertools.repeat(outdir), itertools.repeat(return_dict), itertools.repeat(genes)))
	combined_profiles = {}
	normal = {}
	#Have to add all conditions together
	today = date.today()
	date_format = "{}_{}_{}".format(today.day, today.month, today.year)
	pp = PdfPages("{}/{}_UTR_averaged.pdf".format(outdir, date_format))

	#First need to average over all genes:
	averaged_profiles = {}
	len_genes = {}
	for key1, key2 in genes.keys(): #Chromosome, bam
		if key2 not in len_genes:
			len_genes[key2] = {}
			len_genes[key2][key1] = 1
		else:
			len_genes[key2][key1] = 1

	for key in return_dict.keys():
		averaged_profiles[key] = return_dict[key]/len(len_genes[key].keys())
	
	for key in rev_conds:
		fig = pyplot.figure()
		pyplot.rc('axes', color_cycle=['b','r', 'c', 'm', 'y', 'k', 'gray', "green"])
		for fasta in rev_conds[key]:
			name = re.sub(".fa", "", fasta)
			name = os.path.basename(name)
			uniq_count = read_reports('{}/{}_report.txt'.format(outdir, name))
			normal[fasta] = uniq_count
			norm = 100000/float(uniq_count)
			normalised_profile = norm * averaged_profiles[fasta]
			if key not in combined_profiles:
				combined_profiles[fasta] = normalised_profile
			else:
				combined_profiles[fasta] += normalised_profile

			pyplot.plot( numpy.arange( -200, 200 ), normalised_profile, label=name)
		pyplot.legend(prop={'size':6})
		pyplot.title(key)  
		pp.savefig(fig)
		pyplot.close()
	fig = pyplot.figure()
	pyplot.rc('axes', color_cycle=['b','r', 'c', 'm', 'y', 'k', 'gray', "green"])
	for key in combined_profiles:
		name = re.sub(".fa", "", key)
		name = os.path.basename(name)
		pyplot.plot( numpy.arange( -200, 200 ), combined_profiles[key], label=name)  
	pyplot.legend(prop={'size':6})
	pp.savefig(fig)
	pp.close()
开发者ID:pdl30,项目名称:pyribotools,代码行数:57,代码来源:profiler.py

示例10: __init__

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
    def __init__(self, **kwargs):
        """
        F1 class constructor

        :param codi_r1: R1 code of the company
        :type codi_r1: str
        :param year: Year of the resolution
        :type year: int
        """

        super(F1, self).__init__(**kwargs)
        self.codi_r1 = kwargs.pop('codi_r1')
        self.year = kwargs.pop('year', datetime.now().year - 1)
        manager = Manager()
        self.cts = manager.dict()
        self.cnaes = manager.dict()
        self.base_object = 'CUPS'
        self.report_name = 'F1 - CUPS'
        self.reducir_cups = kwargs.get("reducir_cups", False)
        mod_all_year = self.connection.GiscedataPolissaModcontractual.search([
            ("data_inici", "<=", "{}-01-01".format(self.year)),
            ("data_final", ">=", "{}-12-31".format(self.year))],
            0, 0, False, {"active_test": False}
        )
        mods_ini = self.connection.GiscedataPolissaModcontractual.search(
            [("data_inici", ">=", "{}-01-01".format(self.year)),
            ("data_inici", "<=", "{}-12-31".format(self.year))],
            0, 0, False, {"active_test": False}
        )
        mods_fi = self.connection.GiscedataPolissaModcontractual.search(
            [("data_final", ">=", "{}-01-01".format(self.year)),
            ("data_final", "<=", "{}-12-31".format(self.year))],
            0, 0, False, {"active_test": False}
        )
        self.modcons_in_year = set(mods_fi + mods_ini + mod_all_year)
        self.default_o_cod_tfa = None
        self.default_o_cnae = None
        search_params = [
            ('name', '=', 'libcnmc_4_2015_default_f1')
        ]
        id_config = self.connection.ResConfig.search(
            search_params
        )

        self.generate_derechos = kwargs.pop("derechos", False)

        if id_config:
            config = self.connection.ResConfig.read(id_config[0], [])
            default_values = literal_eval(config['value'])
            if default_values.get('o_cod_tfa'):
                self.default_o_cod_tfa = default_values.get('o_cod_tfa')
            if default_values.get('o_cnae'):
                self.default_o_cnae = default_values.get('o_cnae')
开发者ID:gisce,项目名称:libCNMC,代码行数:55,代码来源:F1.py

示例11: _get

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
    def _get(self, args):
        draft_id = args[0]
        id = args[1] if len(args) > 1 else None

        q = self.db.query(Player)
        if id is not None:
            player = q.filter(Player.id == int(id)).first()
            team = self.db.query(Team).filter(and_(Team.is_owner == True,
                                                   Team.draft_id == draft_id)).first()

            available_players = self.db.query(Player).join(Player.core).filter(and_(PlayerCore.rank != None,
                                                                                    PlayerCore.target_price != None,
                                                                                    PlayerCore.points > 0,
                                                                                    Player.draft_id == draft_id,
                                                                                    Player.team_id == None,
                                                                                    Player.id != player.id)).order_by(PlayerCore.rank).all()

            min_price = 1
            max_price = min(player.core.target_price + 21, team.money)
            manager = Manager()
            max_starters_points = manager.dict()
            max_bench_points = manager.dict()
            pool = Pool(processes=8)
            starters, bench = get_starters_and_bench(self.db, team.id)
            max_starters_points[0] = optimizer.optimize_roster(starters, available_players, team.money - (constants.BENCH_SIZE - len(bench)))[1]
            for m in range(min_price, 10):
                pool.apply_async(wrap_optimizer, args=(starters, available_players, team.money - m - (constants.BENCH_SIZE - len(bench)) + 1, max_bench_points, m))

            full_starters = True
            for s in starters:
                if s is None:
                    full_starters = False
            if not full_starters:
                starters_clone = list(starters)
                bench_clone = list(bench)
                place_player(player, starters_clone, bench_clone)
                for m in range(min_price, max_price):
                    pool.apply_async(wrap_optimizer, args=(starters_clone, available_players, team.money - m - (constants.BENCH_SIZE - len(bench_clone)), max_starters_points, m))

            pool.close()
            pool.join()

            ret = player.to_dict(['core'])
            ret['max_starters_points'] = dict(max_starters_points)
            ret['max_bench_points'] = dict(max_bench_points)

            return ret
        else:
            players = q.join(PlayerCore).filter(and_(Player.draft_id == int(draft_id),
                                                     PlayerCore.rank != None,
                                                     PlayerCore.target_price != None)).all()
            return {'players': [p.to_dict(['core']) for p in players]}
开发者ID:jkgneu12,项目名称:draft,代码行数:54,代码来源:api.py

示例12: run_parallel

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
    def run_parallel(
            self, test_suites, test_runner, result_type=None,
            results_path=None):

        exit_code = 0
        proc = None
        unittest.installHandler()
        processes = []
        manager = Manager()
        results = manager.dict()
        manager.dict()
        start = time.time()

        test_mapping = {}
        for test_suite in test_suites:
            # Give each test suite an uuid so it can be
            # matched to the correct test result
            test_id = str(uuid.uuid4())
            test_mapping[test_id] = test_suite

            proc = Process(
                target=self.execute_test,
                args=(test_runner, test_id, test_suite, results))
            processes.append(proc)
            proc.start()

        for proc in processes:
            proc.join()

        finish = time.time()

        errors, failures, _ = self.dump_results(start, finish, results)

        if result_type is not None:
            all_results = []
            for test_id, result in results.items():
                tests = test_mapping[test_id]
                result_parser = SummarizeResults(
                    vars(result), tests, (finish - start))
                all_results += result_parser.gather_results()

            reporter = Reporter(
                result_parser=result_parser, all_results=all_results)
            reporter.generate_report(
                result_type=result_type, path=results_path)

        if failures or errors:
            exit_code = 1

        return exit_code
开发者ID:jacobwagner,项目名称:opencafe,代码行数:52,代码来源:runner.py

示例13: parallel_peak_file_plot

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
def parallel_peak_file_plot(ibams, bed_file, size_dict, halfwinwidth, norm, controls):
	positions = set()
	for line in open(bed_file):
		fields = line.split( "\t" )
		name = re.sub("chr", "", fields[0])
		window = HTSeq.GenomicInterval( name, int(fields[1]), int(fields[2]), "." )
		positions.add(window)
	if controls == None:
		manager = Manager()
		return_dict = manager.dict()
		pool = Pool(8)
		if norm: #Normalisation provided
			pool.map(read_bam_function, itertools.izip(list(ibams.keys()), itertools.repeat(positions), itertools.repeat(halfwinwidth), 
				itertools.repeat(return_dict), itertools.repeat(norm), itertools.repeat(None))) ##Running annotation in parallel
		else:
			pool.map(read_bam_function, itertools.izip(list(ibams.keys()), itertools.repeat(positions), itertools.repeat(halfwinwidth), 
				itertools.repeat(return_dict), itertools.repeat(None), itertools.repeat(size_dict)))
		pool.close()
		pool.join()		
		for key in return_dict.keys():
			pyplot.plot( numpy.arange( -halfwinwidth, halfwinwidth ), return_dict[key], label=ibams[key])  
		pyplot.legend(prop={'size':8})
		pyplot.savefig("Average_peak_profile.pdf".format(ibams[key]))
	else:
		manager = Manager()
		return_dict = manager.dict()
		pool = Pool(8)
		pool.map(read_bam_function, itertools.izip(list(ibams.keys()), itertools.repeat(positions), itertools.repeat(halfwinwidth), 
				itertools.repeat(return_dict), itertools.repeat(None), itertools.repeat(None)))
		control_dict = manager.dict()
		control_bam = []
		for key in controls:
			control_bam.append(controls[key])
		control_sizes = sam_size(control_bam)
		pool = Pool(8)
		pool.map(read_bam_function, itertools.izip((control_bam), itertools.repeat(positions), itertools.repeat(halfwinwidth), 
			itertools.repeat(control_dict),  itertools.repeat(None),  itertools.repeat(None))) 
		pool.close()
		pool.join()	
	#	colors = ["b", "g", "r", "y", "k"] #To make it more robust, just use default colors
		c = 0
		for key in return_dict.keys():
			control = controls[key]
			new_profile = return_dict[key] - control_dict[control] #Unsure if working properly, maybe make it more intelligent?
			gapdh = read_counts(norm[key])
			constant = 1000/float(gapdh)
			new_profile = new_profile*constant
			pyplot.plot( numpy.arange( -halfwinwidth, halfwinwidth ), new_profile, label=ibams[key])#, color=colors[c])
		pyplot.legend(prop={'size':8})
		pyplot.savefig("Average_peak_profile.pdf".format(ibams[key]))
开发者ID:pdl30,项目名称:pyngsplot,代码行数:52,代码来源:peak_profiles.py

示例14: __init__

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
 def __init__(self, **kwargs):
     super(CreateCelles, self).__init__(**kwargs)
     self.header = [
         'name', 'tipus_element', 'installacio', 'tipus_posicio',
         'inventari', 'aillament', 'cini', 'propietari', 'perc_financament',
         'tensio'
     ]
     self.search_keys = [('name')]
     self.fields_read_ct = ['perc_financament', 'propietari']
     self.fields_read_at_tram = ['perc_financament']
     self.object = self.connection.GiscedataCellesCella
     manager = Manager()
     self.cts = manager.dict()
     self.at_suports = manager.dict()
开发者ID:gisce,项目名称:libCNMC,代码行数:16,代码来源:create_celles.py

示例15: search

# 需要导入模块: from multiprocessing import Manager [as 别名]
# 或者: from multiprocessing.Manager import dict [as 别名]
    def search(self, links=False):
        """
        Get links from the search engines and fill them to the respective lists.
        It gets self.pages of links from Search Engines, sends them to the formatter functions and gets the lists.
        :return: nothing
        """
        if self.type == "text":
            mg = Manager()
            ret = mg.dict()
            jobs = []
            p1 = Process(target=self.google_proc, args=(ret,))
            jobs.append(p1)
            p2 = Process(target=self.yahoo_proc, args=(ret,))
            jobs.append(p2)
            p3 = Process(target=self.bing_proc, args=(ret,))
            jobs.append(p3)
            p1.start()
            p2.start()
            p3.start()

            for proc in jobs:
                proc.join()

            temp = ret.values()[0] + ret.values()[1] + ret.values()[2]
            print temp
            for i in temp:
                f = 0
                for j in self.uniquelinks:
                    if i[1] == j[1]:
                        f = 1
                if f == 0:
                    self.uniquelinks.append(i)
            if links:
                return self.uniquelinks
            else:  # [[title, link, data], [title, link, data] ...]
                mg = Manager()
                ret = mg.dict()
                jobs = []
                n = 0
                for li in self.uniquelinks[0:3]:
                    p = Process(target=self.data_collector, args=(n, li[1], ret))
                    n += 1
                    jobs.append(p)
                    p.start()

                for proc in jobs:
                    proc.join()
                print ret.values()
                print len(ret.values())
开发者ID:projectmagpy,项目名称:MagPy,代码行数:51,代码来源:searchengine.py


注:本文中的multiprocessing.Manager.dict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。