本文整理汇总了Python中moviepy.editor.VideoFileClip.fl_image方法的典型用法代码示例。如果您正苦于以下问题:Python VideoFileClip.fl_image方法的具体用法?Python VideoFileClip.fl_image怎么用?Python VideoFileClip.fl_image使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类moviepy.editor.VideoFileClip
的用法示例。
在下文中一共展示了VideoFileClip.fl_image方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run_video
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
def run_video():
print("Run Video")
from moviepy.editor import VideoFileClip
file = "videos/challenge_video"
clip = VideoFileClip("./" + file + ".mp4")
output_video = "./" + file + "_processed.mp4"
data_dir = './data'
num_classes = 2
global g_session
global g_logits
global g_keep_prob
global g_input_image
with tf.Session() as g_session:
vgg_path = os.path.join(data_dir, 'vgg')
correct_label = tf.placeholder(tf.int32, [None, None, None, num_classes], name='correct_label')
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
g_input_image, g_keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(g_session, vgg_path)
layer_output = layers(layer3_out, layer4_out, layer7_out, num_classes)
g_logits, train_op, cross_entropy_loss = optimize(layer_output, correct_label, learning_rate, num_classes)
print("Restoring model...")
saver = tf.train.Saver()
saver.restore(g_session, "./model/semantic_segmentation_model.ckpt")
print("Model restored.")
output_clip = clip.fl_image(process_video_image)
# output_clip = clip.subclip(0, 1).fl_image(process_video_image)
output_clip.write_videofile(output_video, audio=False)
示例2: range
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
return result
#%%
#import glob
#img_list = glob.glob('test_images/*.jpg')
#for i in range(len(img_list)):
# process(cv2.imread(img_list[i]))
#%%
#import glob
#img_list = glob.glob('test_images/*.jpg')
#i = 0
#
#for img_path in img_list:
# img = cv2.imread(img_path)
# output_img = process(img)
# print(output_img.shape)
# i += 1
# cv2.imwrite('test_images_output/output_image_'+str(i)+'.jpg', output_img)
#%%
video = VideoFileClip('project_video.mp4')
input = video.fl_image(process)
input.write_videofile('project_video_output_test.mp4', audio = False)
示例3: print
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
print('')
print('Retaining with best hyper-parameters')
scaler = StandardScaler().fit(X_features)
X_features = scaler.transform(X_features)
svc = LinearSVC(C=best_c, penalty=best_penalty, loss=best_loss).fit(X_features, y_features)
vehicle_detector = vehicle.VehicleDetector(color_space=color_space,
orient=orient,
pix_per_cell=pix_per_cell,
cell_per_block=cell_per_block,
hog_channel=hog_channel,
spatial_size=spatial_size,
hist_bins=hist_bins,
spatial_feat=spatial_feat,
hist_feat=hist_feat,
hog_feat=hog_feat,
y_start_stop=y_start_stop,
x_start_stop=x_start_stop,
xy_window=xy_window,
xy_overlap=xy_overlap,
heat_threshold = 15,
scaler=scaler,
classifier=svc)
output_file = './processed_project_video.mp4'
input_file = './project_video.mp4'
clip = VideoFileClip(input_file)
out_clip = clip.fl_image(vehicle_detector.detect)
out_clip.write_videofile(output_file, audio=False)
示例4: process_image
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
return draw_img
def process_image(img):
output = pipeline(img)
return output
# In[40]:
frame_ctx = frame()
video_output1 = 'project_video_output.mp4'
video_input1 = VideoFileClip('project_video.mp4')#.subclip(4, 7)#subclip(7, 12)#subclip(40, 42)
processed_video = video_input1.fl_image(process_image)
get_ipython().run_line_magic('time', 'processed_video.write_videofile(video_output1, audio=False)')
#
# #### Discussion
#
# ####1. Briefly discuss any problems / issues you faced in your implementation of this project. Where will your pipeline likely fail? What could you do to make it more robust?
#
# There are some false positive (which I do not consider to be false) as those cars are comming from the other direction (on the left) and I could have used the xstart to regulate the starting of the sliding windows in X direction to filterout those detection or detect the lane line as in previous project and ignore any detection outside of the lane line but that will not be practicle as I think this is important to detect anything along the x axis even if they are outside of the lane.
#
# I could have use more sliding windows to make the bounded box more stable but just wanted to make it simple for now.
#
# I could have calculate the centroid of each detected boxes per frame, measure the distance of these centroids among the boxes near the same location (with some += mergin) over few frames and can estimate the projected distance of the same box(car) on the next upcomming frame and draw it and could make the pipeline faster as was suggested in the course video. But that should also take into consideration the fact that car passing my car can slow down and in next frame it may appear closer as oppose to farther.
#
# I coud have shown the number of car detected (labels[1]) based on heatmap & before and after applying threshold in realtime to make the video more predictable about the pipeline, also could have implemented a dynamic sliding window where more scanning will be done when there is a change in the number of detection and apply even a harder threshold in this transient time to ignore the false positive etc with a firm detection.
示例5: load_graph
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
tf.import_graph_def(od_graph_def, name='')
return graph
detection_graph = load_graph(SSD_V4)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
clip = VideoFileClip('raw_video.avi')
def pipeline(img):
draw_img = Image.fromarray(img)
boxes, scores, classes = sess.run([detection_boxes, detection_scores, detection_classes], feed_dict={image_tensor: np.expand_dims(img, 0)})
boxes = np.squeeze(boxes)
scores = np.squeeze(scores)
classes = np.squeeze(classes)
confidence_cutoff = 0.8
boxes, scores, classes = filter_boxes(confidence_cutoff, boxes, scores, classes)
width, height = draw_img.size
box_coords = to_image_coords(boxes, height, width)
draw_boxes(draw_img, box_coords, classes)
return np.array(draw_img)
with tf.Session(graph=detection_graph) as sess:
image_tensor = sess.graph.get_tensor_by_name('image_tensor:0')
detection_boxes = sess.graph.get_tensor_by_name('detection_boxes:0')
detection_scores = sess.graph.get_tensor_by_name('detection_scores:0')
detection_classes = sess.graph.get_tensor_by_name('detection_classes:0')
new_clip = clip.fl_image(pipeline)
new_clip.write_videofile('SSD_V4_result.mp4')
开发者ID:muhammedabdelnasser,项目名称:An-Autonomous-Vehicle-System-For-Carla,代码行数:33,代码来源:tl_detection_classification.py
示例6: VideoFileClip
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
road_warped = cv2.warpPerspective(road, Minv, img_size, flags=cv2.INTER_LINEAR)
road_warped_bkg = cv2.warpPerspective(road_bkg, Minv, img_size, flags=cv2.INTER_LINEAR)
base = cv2.addWeighted(img, 1.0, road_warped_bkg, -1.0, 0.0)
result = cv2.addWeighted(base, 1.0, road_warped, .7, 0.0)
ym_per_pix = curve_centers.ym_per_pix
xm_per_pix= curve_centers.xm_per_pix
curve_fit_cr = np.polyfit(np.array(res_yvals,np.float32)*ym_per_pix, np.array(leftx, np.float32)*xm_per_pix, 2)
curverad = ((1 + (2*curve_fit_cr[0]*yvals[-1]*ym_per_pix + curve_fit_cr[1])**2)**1.5) / np.absolute(2*curve_fit_cr[0])
camera_center = (left_fitx[-1] + right_fitx[-1])/2
center_diff = (camera_center-warped.shape[1]/2)*xm_per_pix
side_pos = 'left'
if center_diff <=0:
side_pos = 'right'
cv2.putText(result, 'Radius of Curvature = '+str(round(curverad, 3))+'(m)',(50,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2)
cv2.putText(result, 'Vehicle is '+str(abs(round(center_diff, 3)))+'m '+side_pos+' of center',(50,100),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2)
return result
if __name__ == '__main__':
output_video = 'output_tracked1.mp4'
input_video = 'project_video.mp4'
clip1 = VideoFileClip(input_video)
video_clip = clip1.fl_image(process_img)
video_clip.write_videofile(output_video, audio=False)
示例7: display
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
combined_grad_mag_dir_hls[(combined_grad_mag_dir == 1) | (combined_sl == 1)] = 1
# display(img, combined_grad_mag_dir_hls)
warped, M = warp(combined_grad_mag_dir_hls)
# display2(combined_grad_mag_dir_hls, warped)
ploty, left_fitx, right_fitx, avg_left_fitx, avg_right_fitx = lanelines(warped)
left_curverad, right_curverad = radius_of_curvature(ploty, left_fitx, right_fitx)
avg_curverad = (left_curverad + right_curverad)/2
offset = find_offset_from_center(img, left_fitx, right_fitx)
result = project(warped, img, ploty, left_fitx, right_fitx, M, avg_curverad, offset, avg_left_fitx, avg_right_fitx)
return result
test_images_path = 'test_images/'
images = glob.glob(test_images_path+"*.jpg")
for image in images:
orig = mpimg.imread(image)
left_fit_current = None
right_fit_current = None
pipeline(orig)
white_output = 'output_images/project_video_mapped.mp4'
clip1 = VideoFileClip("project_video.mp4")
white_clip = clip1.fl_image(pipeline)
white_clip.write_videofile(white_output, audio=False)
示例8: annotate_video
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
def annotate_video(input_file, output_file):
""" Given input_file video, save annotated video to output_file """
video = VideoFileClip(input_file)
annotated_video = video.fl_image(annotate_image)
annotated_video.write_videofile(output_file, audio=False)
示例9: process_image
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
test_images = os.listdir("test_images/")
for test_image in test_images:
# load in image
initial_img = mpimg.imread('test_images/' + test_image)
img = process_image(initial_img)
# save to output
mpimg.imsave("output/" + test_image, img)
# Import everything needed to edit/save/watch video clips
from moviepy.editor import VideoFileClip
from IPython.display import HTML
making_videos = True
if making_videos:
white_output = 'white.mp4'
clip1 = VideoFileClip("solidWhiteRight.mp4")
white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!!
white_clip.write_videofile(white_output, audio=False)
yellow_output = 'yellow.mp4'
clip2 = VideoFileClip('solidYellowLeft.mp4')
yellow_clip = clip2.fl_image(process_image)
yellow_clip.write_videofile(yellow_output, audio=False)
challenge_output = 'extra.mp4'
clip2 = VideoFileClip('challenge.mp4')
challenge_clip = clip2.fl_image(process_image)
challenge_clip.write_videofile(challenge_output, audio=False)
示例10: process_video
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
def process_video(input_path, output_path):
#clip = VideoFileClip(input_path).subclip(23,28)
clip = VideoFileClip(input_path)
result = clip.fl_image(process_image)
result.write_videofile(output_path)
示例11: draw_detections
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
# adapt to movie based on PD_2016.py
import cv2
import numpy as np
from moviepy.editor import VideoFileClip
def draw_detections(img, rects, thickness = 1):
for x, y, w, h in rects:
pad_w, pad_h = int(0.15*w), int(0.05*h)
cv2.rectangle(img, (x+pad_w, y+pad_h), (x+w-pad_w, y+h-pad_h), (0, 255, 0), thickness)
def process_image(img):
# initialize pedestrian detector
hog = cv2.HOGDescriptor() #derive HOG features
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) #setSVMDetector
# start pedestrian detection
found, w = hog.detectMultiScale(img, winStride = (8,8), padding = (8, 8), scale = 1.15, finalThreshold = 1)
draw_detections(img, found) # draw rectangles
result = img
return result
test_output = 'test_output.mp4'
clip1 = VideoFileClip('../Dataset/YouTube/【ドラレコ】横浜市営バスの恐怖2.mp4')
test_clip = clip1.fl_image(process_image)
test_clip.write_videofile(test_output, audio=False)
示例12: VideoFileClip
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
#plt.savefig('./output_images/detected_lane.png')
# # 3. Pipeline for video
#
# The processed project video can be found here.
#
# The result on project_video.mp4 is shown below. The algorithm works did not work on the two challenge videos. I didn't go further to modify the code to work on these challenges. As mentioned above, I am not really convinced by the material in this project, so even it succeeds on the challenge videos, I have no confidence at all that it will work on new scenarios.
# In[39]:
output_dir= './output_images/'
clip_input_file = 'project_video.mp4'
clip_output_file = output_dir +'sample_' + clip_input_file
clip = VideoFileClip(clip_input_file).subclip(30, 40)
clip_output = clip.fl_image(process_image)
get_ipython().magic('time clip_output.write_videofile(clip_output_file, audio=False)')
# In[40]:
output_dir= './output_images/'
clip_input_file = 'project_video.mp4'
clip_output_file = output_dir +'processed_' + clip_input_file
clip = VideoFileClip(clip_input_file)
clip_output = clip.fl_image(process_image)
get_ipython().magic('time clip_output.write_videofile(clip_output_file, audio=False)')
# In[2]:
示例13: process_image1
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
'theta':1,
'threshold':40,
'min_line_length':3,
'max_line_gap':1}
# Process images in the "test_images" directory.
for path in glob.glob('test_images/solid*.jpg'):
fname = path.split("/")[1]
image = mpimg.imread(path)
processed_image = process_image1(image)
mpimg.imsave("test_images/processed_%s" % fname, processed_image)
# Process first test video.
white_output = 'white.mp4'
clip1 = VideoFileClip("solidWhiteRight.mp4")
white_clip = clip1.fl_image(process_image2)
white_clip.write_videofile(white_output, audio=False)
# Process second test video.
yellow_output = 'yellow.mp4'
clip1 = VideoFileClip("solidYellowLeft.mp4")
yellow_clip = clip1.fl_image(process_image2)
yellow_clip.write_videofile(yellow_output, audio=False)
# Parameters for part 2 (challenge)
theta = {'horizon':0.61,
'hood':0.07,
'trapezoid_top_factor':0.10,
'trapezoid_bottom_factor':0.90,
'angle_cutoff':0.75,
示例14: process_video
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
##---------------------------------------------------------------------------------------
from moviepy.editor import VideoFileClip
def process_video(img):
out_img = detect_cars_with_heat(img, svc, X_scaler, orient, pix_per_cell,
cell_per_block, (spatial,spatial), histbin, heatmap_threshold)
return out_img
white_output = '/home/haoyang/CarND-Vehicle-Detection/output_project_video.mp4'
clip1 = VideoFileClip('/home/haoyang/CarND-Vehicle-Detection/project_video.mp4')
white_clip = clip1.fl_image(process_video)
white_clip.write_videofile(white_output, audio=False)
示例15: pipeline_yolo
# 需要导入模块: from moviepy.editor import VideoFileClip [as 别名]
# 或者: from moviepy.editor.VideoFileClip import fl_image [as 别名]
image = mpimg.imread(filename)
#(1) Yolo pipeline
yolo_result = pipeline_yolo(image)
plt.figure()
plt.imshow(yolo_result)
plt.title('yolo pipeline', fontsize=30)
#(2) SVM pipeline
draw_img = pipeline_svm(image)
fig = plt.figure()
plt.imshow(draw_img)
plt.title('svm pipeline', fontsize=30)
plt.show()
elif demo == 2:
# YOLO Pipeline
video_output = 'examples/project_YOLO.mp4'
clip1 = VideoFileClip("examples/project_video.mp4").subclip(30,32)
clip = clip1.fl_image(pipeline_yolo)
clip.write_videofile(video_output, audio=False)
else:
# SVM pipeline
video_output = 'examples/project_svm.mp4'
clip1 = VideoFileClip("examples/project_video.mp4").subclip(30,32)
clip = clip1.fl_image(pipeline_svm)
clip.write_videofile(video_output, audio=False)