当前位置: 首页>>代码示例>>Python>>正文


Python Epochs.plot方法代码示例

本文整理汇总了Python中mne.Epochs.plot方法的典型用法代码示例。如果您正苦于以下问题:Python Epochs.plot方法的具体用法?Python Epochs.plot怎么用?Python Epochs.plot使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.Epochs的用法示例。


在下文中一共展示了Epochs.plot方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_array_raw

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import plot [as 别名]
def test_array_raw():
    """Test creating raw from array
    """
    import matplotlib.pyplot as plt
    # creating
    raw = Raw(fif_fname).crop(2, 5, copy=False)
    data, times = raw[:, :]
    sfreq = raw.info['sfreq']
    ch_names = [(ch[4:] if 'STI' not in ch else ch)
                for ch in raw.info['ch_names']]  # change them, why not
    # del raw
    types = list()
    for ci in range(102):
        types.extend(('grad', 'grad', 'mag'))
    types.extend(['stim'] * 9)
    types.extend(['eeg'] * 60)
    # wrong length
    assert_raises(ValueError, create_info, ch_names, sfreq, types)
    # bad entry
    types.append('foo')
    assert_raises(KeyError, create_info, ch_names, sfreq, types)
    types[-1] = 'eog'
    # default type
    info = create_info(ch_names, sfreq)
    assert_equal(info['chs'][0]['kind'], _kind_dict['misc'][0])
    # use real types
    info = create_info(ch_names, sfreq, types)
    raw2 = _test_raw_reader(RawArray, test_preloading=False,
                            data=data, info=info)
    data2, times2 = raw2[:, :]
    assert_allclose(data, data2)
    assert_allclose(times, times2)
    assert_true('RawArray' in repr(raw2))

    # filtering
    picks = pick_types(raw2.info, misc=True, exclude='bads')[:4]
    assert_equal(len(picks), 4)
    raw_lp = raw2.copy()
    with warnings.catch_warnings(record=True):
        raw_lp.filter(0., 4.0 - 0.25, picks=picks, n_jobs=2)
    raw_hp = raw2.copy()
    with warnings.catch_warnings(record=True):
        raw_hp.filter(8.0 + 0.25, None, picks=picks, n_jobs=2)
    raw_bp = raw2.copy()
    with warnings.catch_warnings(record=True):
        raw_bp.filter(4.0 + 0.25, 8.0 - 0.25, picks=picks)
    raw_bs = raw2.copy()
    with warnings.catch_warnings(record=True):
        raw_bs.filter(8.0 + 0.25, 4.0 - 0.25, picks=picks, n_jobs=2)
    data, _ = raw2[picks, :]
    lp_data, _ = raw_lp[picks, :]
    hp_data, _ = raw_hp[picks, :]
    bp_data, _ = raw_bp[picks, :]
    bs_data, _ = raw_bs[picks, :]
    sig_dec = 11
    assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
    assert_array_almost_equal(data, bp_data + bs_data, sig_dec)

    # plotting
    raw2.plot()
    raw2.plot_psd()
    plt.close('all')

    # epoching
    events = find_events(raw2, stim_channel='STI 014')
    events[:, 2] = 1
    assert_true(len(events) > 2)
    epochs = Epochs(raw2, events, 1, -0.2, 0.4, preload=True)
    epochs.plot_drop_log()
    with warnings.catch_warnings(record=True):  # deprecation
        warnings.simplefilter('always')
        epochs.plot()
    evoked = epochs.average()
    evoked.plot()
    plt.close('all')
开发者ID:Tavpritesh,项目名称:mne-python,代码行数:77,代码来源:test_array.py

示例2: Epochs

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import plot [as 别名]
###############################################################################
# Read in raw data and prepare for epoching
raw_fname = op.join(study_path, 'ds117', subject, 'MEG', 'run_01_sss.fif')
raw = mne.io.read_raw_fif(raw_fname, preload=True, add_eeg_ref=False)

picks = mne.pick_types(raw.info, meg=True, exclude='bads')
events = mne.find_events(raw, stim_channel='STI101', consecutive='increasing',
                         mask=4352, mask_type='not_and', min_duration=0.003,
                         verbose=True)

###############################################################################
# First, we don't highpass filter and only baseline. Note how it creates a
# spatially varying distortation of the time-domain signal in the form
# of "fanning"
raw.filter(None, 40, **filter_params)
evoked = Epochs(raw, events, event_id=event_ids, picks=picks,
                baseline=(None, 0)).average()
evoked.plot()
evoked.plot_topomap()

###############################################################################
# Next, we highpass filter (but no lowpass filter as we have already done it)
# but don't baseline. Now, the late effects in the topography are no longer
# visible and the "fanning" has disappeared.
raw.filter(1, None, l_trans_bandwidth=0.5, **filter_params)
evoked = Epochs(raw, events, event_id=event_ids, picks=picks,
                baseline=None).average()
evoked.plot()
evoked.plot_topomap()
开发者ID:mne-tools,项目名称:mne-biomag-group-demo,代码行数:31,代码来源:plot_fanning.py

示例3: test_array

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import plot [as 别名]
def test_array():
    """Test creating raw from array
    """
    # creating
    raw = Raw(fif_fname).crop(2, 5, copy=False)
    data, times = raw[:, :]
    sfreq = raw.info['sfreq']
    ch_names = [(ch[4:] if 'STI' not in ch else ch)
                for ch in raw.info['ch_names']]  # change them, why not
    #del raw
    types = list()
    for ci in range(102):
        types.extend(('grad', 'grad', 'mag'))
    types.extend(['stim'] * 9)
    types.extend(['eeg'] * 60)
    # wrong length
    assert_raises(ValueError, create_info, ch_names, sfreq, types)
    # bad entry
    types.append('foo')
    assert_raises(KeyError, create_info, ch_names, sfreq, types)
    types[-1] = 'eog'
    info = create_info(ch_names, sfreq, types)
    raw2 = RawArray(data, info)
    data2, times2 = raw2[:, :]
    assert_allclose(data, data2)
    assert_allclose(times, times2)

    # saving
    temp_fname = op.join(tempdir, 'raw.fif')
    raw2.save(temp_fname)
    raw3 = Raw(temp_fname)
    data3, times3 = raw3[:, :]
    assert_allclose(data, data3)
    assert_allclose(times, times3)

    # filtering
    picks = pick_types(raw2.info, misc=True, exclude='bads')[:4]
    assert_equal(len(picks), 4)
    raw_lp = raw2.copy()
    with warnings.catch_warnings(record=True):
        raw_lp.filter(0., 4.0 - 0.25, picks=picks, n_jobs=2)
    raw_hp = raw2.copy()
    with warnings.catch_warnings(record=True):
        raw_hp.filter(8.0 + 0.25, None, picks=picks, n_jobs=2)
    raw_bp = raw2.copy()
    with warnings.catch_warnings(record=True):
        raw_bp.filter(4.0 + 0.25, 8.0 - 0.25, picks=picks)
    raw_bs = raw2.copy()
    with warnings.catch_warnings(record=True):
        raw_bs.filter(8.0 + 0.25, 4.0 - 0.25, picks=picks, n_jobs=2)
    data, _ = raw2[picks, :]
    lp_data, _ = raw_lp[picks, :]
    hp_data, _ = raw_hp[picks, :]
    bp_data, _ = raw_bp[picks, :]
    bs_data, _ = raw_bs[picks, :]
    sig_dec = 11
    assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
    assert_array_almost_equal(data, bp_data + bs_data, sig_dec)

    # plotting
    import matplotlib
    matplotlib.use('Agg')  # for testing don't use X server
    raw2.plot()
    raw2.plot_psds()

    # epoching
    events = find_events(raw2, stim_channel='STI 014')
    events[:, 2] = 1
    assert_true(len(events) > 2)
    epochs = Epochs(raw2, events, 1, -0.2, 0.4, preload=True)
    epochs.plot_drop_log()
    epochs.plot()
    evoked = epochs.average()
    evoked.plot()
开发者ID:kingjr,项目名称:mne-python,代码行数:76,代码来源:test_array.py

示例4: test_array_raw

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import plot [as 别名]
def test_array_raw():
    """Test creating raw from array
    """
    import matplotlib.pyplot as plt

    # creating
    raw = read_raw_fif(fif_fname).crop(2, 5)
    data, times = raw[:, :]
    sfreq = raw.info["sfreq"]
    ch_names = [(ch[4:] if "STI" not in ch else ch) for ch in raw.info["ch_names"]]  # change them, why not
    # del raw
    types = list()
    for ci in range(101):
        types.extend(("grad", "grad", "mag"))
    types.extend(["ecog", "seeg", "hbo"])  # really 3 meg channels
    types.extend(["stim"] * 9)
    types.extend(["eeg"] * 60)
    # wrong length
    assert_raises(ValueError, create_info, ch_names, sfreq, types)
    # bad entry
    types.append("foo")
    assert_raises(KeyError, create_info, ch_names, sfreq, types)
    types[-1] = "eog"
    # default type
    info = create_info(ch_names, sfreq)
    assert_equal(info["chs"][0]["kind"], _kind_dict["misc"][0])
    # use real types
    info = create_info(ch_names, sfreq, types)
    raw2 = _test_raw_reader(RawArray, test_preloading=False, data=data, info=info, first_samp=2 * data.shape[1])
    data2, times2 = raw2[:, :]
    assert_allclose(data, data2)
    assert_allclose(times, times2)
    assert_true("RawArray" in repr(raw2))
    assert_raises(TypeError, RawArray, info, data)

    # filtering
    picks = pick_types(raw2.info, misc=True, exclude="bads")[:4]
    assert_equal(len(picks), 4)
    raw_lp = raw2.copy()
    raw_lp.filter(
        None,
        4.0,
        h_trans_bandwidth=4.0,
        filter_length="auto",
        picks=picks,
        n_jobs=2,
        phase="zero",
        fir_window="hamming",
    )
    raw_hp = raw2.copy()
    raw_hp.filter(
        16.0,
        None,
        l_trans_bandwidth=4.0,
        filter_length="auto",
        picks=picks,
        n_jobs=2,
        phase="zero",
        fir_window="hamming",
    )
    raw_bp = raw2.copy()
    raw_bp.filter(
        8.0,
        12.0,
        l_trans_bandwidth=4.0,
        h_trans_bandwidth=4.0,
        filter_length="auto",
        picks=picks,
        phase="zero",
        fir_window="hamming",
    )
    raw_bs = raw2.copy()
    raw_bs.filter(
        16.0,
        4.0,
        l_trans_bandwidth=4.0,
        h_trans_bandwidth=4.0,
        filter_length="auto",
        picks=picks,
        n_jobs=2,
        phase="zero",
        fir_window="hamming",
    )
    data, _ = raw2[picks, :]
    lp_data, _ = raw_lp[picks, :]
    hp_data, _ = raw_hp[picks, :]
    bp_data, _ = raw_bp[picks, :]
    bs_data, _ = raw_bs[picks, :]
    sig_dec = 15
    assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
    assert_array_almost_equal(data, bp_data + bs_data, sig_dec)

    # plotting
    raw2.plot()
    raw2.plot_psd(tmax=np.inf)
    plt.close("all")

    # epoching
    events = find_events(raw2, stim_channel="STI 014")
    events[:, 2] = 1
#.........这里部分代码省略.........
开发者ID:nwilming,项目名称:mne-python,代码行数:103,代码来源:test_array.py

示例5: test_array_raw

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import plot [as 别名]
def test_array_raw():
    """Test creating raw from array."""
    import matplotlib.pyplot as plt
    # creating
    raw = read_raw_fif(fif_fname).crop(2, 5)
    data, times = raw[:, :]
    sfreq = raw.info['sfreq']
    ch_names = [(ch[4:] if 'STI' not in ch else ch)
                for ch in raw.info['ch_names']]  # change them, why not
    # del raw
    types = list()
    for ci in range(101):
        types.extend(('grad', 'grad', 'mag'))
    types.extend(['ecog', 'seeg', 'hbo'])  # really 3 meg channels
    types.extend(['stim'] * 9)
    types.extend(['eeg'] * 60)
    # wrong length
    assert_raises(ValueError, create_info, ch_names, sfreq, types)
    # bad entry
    types.append('foo')
    assert_raises(KeyError, create_info, ch_names, sfreq, types)
    types[-1] = 'eog'
    # default type
    info = create_info(ch_names, sfreq)
    assert_equal(info['chs'][0]['kind'], _kind_dict['misc'][0])
    # use real types
    info = create_info(ch_names, sfreq, types)
    raw2 = _test_raw_reader(RawArray, test_preloading=False,
                            data=data, info=info, first_samp=2 * data.shape[1])
    data2, times2 = raw2[:, :]
    assert_allclose(data, data2)
    assert_allclose(times, times2)
    assert_true('RawArray' in repr(raw2))
    assert_raises(TypeError, RawArray, info, data)

    # filtering
    picks = pick_types(raw2.info, misc=True, exclude='bads')[:4]
    assert_equal(len(picks), 4)
    raw_lp = raw2.copy()
    kwargs = dict(fir_design='firwin', picks=picks)
    raw_lp.filter(None, 4.0, h_trans_bandwidth=4., n_jobs=2, **kwargs)
    raw_hp = raw2.copy()
    raw_hp.filter(16.0, None, l_trans_bandwidth=4., n_jobs=2, **kwargs)
    raw_bp = raw2.copy()
    raw_bp.filter(8.0, 12.0, l_trans_bandwidth=4., h_trans_bandwidth=4.,
                  **kwargs)
    raw_bs = raw2.copy()
    raw_bs.filter(16.0, 4.0, l_trans_bandwidth=4., h_trans_bandwidth=4.,
                  n_jobs=2, **kwargs)
    data, _ = raw2[picks, :]
    lp_data, _ = raw_lp[picks, :]
    hp_data, _ = raw_hp[picks, :]
    bp_data, _ = raw_bp[picks, :]
    bs_data, _ = raw_bs[picks, :]
    sig_dec = 15
    assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
    assert_array_almost_equal(data, bp_data + bs_data, sig_dec)

    # plotting
    raw2.plot()
    raw2.plot_psd(tmax=np.inf, average=True, n_fft=1024, spatial_colors=False)
    plt.close('all')

    # epoching
    events = find_events(raw2, stim_channel='STI 014')
    events[:, 2] = 1
    assert_true(len(events) > 2)
    epochs = Epochs(raw2, events, 1, -0.2, 0.4, preload=True)
    epochs.plot_drop_log()
    epochs.plot()
    evoked = epochs.average()
    evoked.plot(time_unit='s')
    assert_equal(evoked.nave, len(events) - 1)
    plt.close('all')

    # complex data
    rng = np.random.RandomState(0)
    data = rng.randn(1, 100) + 1j * rng.randn(1, 100)
    raw = RawArray(data, create_info(1, 1000., 'eeg'))
    assert_allclose(raw._data, data)

    # Using digital montage to give MNI electrode coordinates
    n_elec = 10
    ts_size = 10000
    Fs = 512.
    elec_labels = [str(i) for i in range(n_elec)]
    elec_coords = np.random.randint(60, size=(n_elec, 3)).tolist()

    electrode = np.random.rand(n_elec, ts_size)
    dig_ch_pos = dict(zip(elec_labels, elec_coords))
    mon = channels.DigMontage(dig_ch_pos=dig_ch_pos)
    info = create_info(elec_labels, Fs, 'ecog', montage=mon)

    raw = RawArray(electrode, info)
    raw.plot_psd(average=False)  # looking for inexistent layout
    raw.plot_psd_topo()
开发者ID:jdammers,项目名称:mne-python,代码行数:98,代码来源:test_array.py

示例6: test_array_raw

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import plot [as 别名]
def test_array_raw():
    """Test creating raw from array
    """
    import matplotlib.pyplot as plt
    # creating
    raw = read_raw_fif(fif_fname, add_eeg_ref=False).crop(2, 5)
    data, times = raw[:, :]
    sfreq = raw.info['sfreq']
    ch_names = [(ch[4:] if 'STI' not in ch else ch)
                for ch in raw.info['ch_names']]  # change them, why not
    # del raw
    types = list()
    for ci in range(101):
        types.extend(('grad', 'grad', 'mag'))
    types.extend(['ecog', 'seeg', 'hbo'])  # really 3 meg channels
    types.extend(['stim'] * 9)
    types.extend(['eeg'] * 60)
    # wrong length
    assert_raises(ValueError, create_info, ch_names, sfreq, types)
    # bad entry
    types.append('foo')
    assert_raises(KeyError, create_info, ch_names, sfreq, types)
    types[-1] = 'eog'
    # default type
    info = create_info(ch_names, sfreq)
    assert_equal(info['chs'][0]['kind'], _kind_dict['misc'][0])
    # use real types
    info = create_info(ch_names, sfreq, types)
    raw2 = _test_raw_reader(RawArray, test_preloading=False,
                            data=data, info=info, first_samp=2 * data.shape[1])
    data2, times2 = raw2[:, :]
    assert_allclose(data, data2)
    assert_allclose(times, times2)
    assert_true('RawArray' in repr(raw2))
    assert_raises(TypeError, RawArray, info, data)

    # filtering
    picks = pick_types(raw2.info, misc=True, exclude='bads')[:4]
    assert_equal(len(picks), 4)
    raw_lp = raw2.copy()
    raw_lp.filter(None, 4.0, h_trans_bandwidth=4.,
                  filter_length='auto', picks=picks, n_jobs=2, phase='zero',
                  fir_window='hamming')
    raw_hp = raw2.copy()
    raw_hp.filter(16.0, None, l_trans_bandwidth=4.,
                  filter_length='auto', picks=picks, n_jobs=2, phase='zero',
                  fir_window='hamming')
    raw_bp = raw2.copy()
    raw_bp.filter(8.0, 12.0, l_trans_bandwidth=4.,
                  h_trans_bandwidth=4., filter_length='auto', picks=picks,
                  phase='zero', fir_window='hamming')
    raw_bs = raw2.copy()
    raw_bs.filter(16.0, 4.0, l_trans_bandwidth=4., h_trans_bandwidth=4.,
                  filter_length='auto', picks=picks, n_jobs=2, phase='zero',
                  fir_window='hamming')
    data, _ = raw2[picks, :]
    lp_data, _ = raw_lp[picks, :]
    hp_data, _ = raw_hp[picks, :]
    bp_data, _ = raw_bp[picks, :]
    bs_data, _ = raw_bs[picks, :]
    sig_dec = 15
    assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
    assert_array_almost_equal(data, bp_data + bs_data, sig_dec)

    # plotting
    raw2.plot()
    raw2.plot_psd()
    plt.close('all')

    # epoching
    events = find_events(raw2, stim_channel='STI 014')
    events[:, 2] = 1
    assert_true(len(events) > 2)
    epochs = Epochs(raw2, events, 1, -0.2, 0.4, preload=True,
                    add_eeg_ref=False)
    epochs.plot_drop_log()
    epochs.plot()
    evoked = epochs.average()
    evoked.plot()
    assert_equal(evoked.nave, len(events) - 1)
    plt.close('all')

    # complex data
    rng = np.random.RandomState(0)
    data = rng.randn(1, 100) + 1j * rng.randn(1, 100)
    raw = RawArray(data, create_info(1, 1000., 'eeg'))
    assert_allclose(raw._data, data)
开发者ID:jmontoyam,项目名称:mne-python,代码行数:89,代码来源:test_array.py

示例7: test_array_raw

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import plot [as 别名]
def test_array_raw():
    """Test creating raw from array
    """
    import matplotlib.pyplot as plt

    # creating
    raw = Raw(fif_fname).crop(2, 5, copy=False)
    data, times = raw[:, :]
    sfreq = raw.info["sfreq"]
    ch_names = [(ch[4:] if "STI" not in ch else ch) for ch in raw.info["ch_names"]]  # change them, why not
    # del raw
    types = list()
    for ci in range(102):
        types.extend(("grad", "grad", "mag"))
    types.extend(["stim"] * 9)
    types.extend(["eeg"] * 60)
    # wrong length
    assert_raises(ValueError, create_info, ch_names, sfreq, types)
    # bad entry
    types.append("foo")
    assert_raises(KeyError, create_info, ch_names, sfreq, types)
    types[-1] = "eog"
    # default type
    info = create_info(ch_names, sfreq)
    assert_equal(info["chs"][0]["kind"], _kind_dict["misc"][0])
    # use real types
    info = create_info(ch_names, sfreq, types)
    raw2 = _test_raw_reader(RawArray, test_preloading=False, data=data, info=info)
    data2, times2 = raw2[:, :]
    assert_allclose(data, data2)
    assert_allclose(times, times2)
    assert_true("RawArray" in repr(raw2))

    # filtering
    picks = pick_types(raw2.info, misc=True, exclude="bads")[:4]
    assert_equal(len(picks), 4)
    raw_lp = raw2.copy()
    with warnings.catch_warnings(record=True):
        raw_lp.filter(0.0, 4.0 - 0.25, picks=picks, n_jobs=2)
    raw_hp = raw2.copy()
    with warnings.catch_warnings(record=True):
        raw_hp.filter(8.0 + 0.25, None, picks=picks, n_jobs=2)
    raw_bp = raw2.copy()
    with warnings.catch_warnings(record=True):
        raw_bp.filter(4.0 + 0.25, 8.0 - 0.25, picks=picks)
    raw_bs = raw2.copy()
    with warnings.catch_warnings(record=True):
        raw_bs.filter(8.0 + 0.25, 4.0 - 0.25, picks=picks, n_jobs=2)
    data, _ = raw2[picks, :]
    lp_data, _ = raw_lp[picks, :]
    hp_data, _ = raw_hp[picks, :]
    bp_data, _ = raw_bp[picks, :]
    bs_data, _ = raw_bs[picks, :]
    sig_dec = 11
    assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
    assert_array_almost_equal(data, bp_data + bs_data, sig_dec)

    # plotting
    raw2.plot()
    raw2.plot_psd()
    plt.close("all")

    # epoching
    events = find_events(raw2, stim_channel="STI 014")
    events[:, 2] = 1
    assert_true(len(events) > 2)
    epochs = Epochs(raw2, events, 1, -0.2, 0.4, preload=True)
    epochs.plot_drop_log()
    epochs.plot()
    evoked = epochs.average()
    evoked.plot()
    plt.close("all")
开发者ID:Famguy,项目名称:mne-python,代码行数:74,代码来源:test_array.py

示例8: Epochs

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import plot [as 别名]
                         verbose=True)
evoked_before = Epochs(raw, events, event_id=event_ids, picks=picks).average()

###############################################################################
# Then Maxfiltered and SSS'd data.
raw = mne.io.read_raw_fif(raw_fname_in, preload=True, add_eeg_ref=False)
raw_sss = mne.io.read_raw_fif(sss_fname_in, preload=True, add_eeg_ref=False)
raw.info['bads'] = bads
raw_sss.info['bads'] = bads

raw = maxwell_filter(raw, calibration=cal, cross_talk=ctc)

raw.filter(1, 40, **filter_params)
raw_sss.filter(1, 40, **filter_params)

evoked_after = Epochs(raw, events, event_id=event_ids, picks=picks).average()
evoked_sss = Epochs(raw_sss, events, event_id=event_ids, picks=picks).average()

###############################################################################
# Plotting
ylim = dict(grad=(-100, 100), mag=(-400, 400))
evoked_before.plot(spatial_colors=True, ylim=ylim,
                   titles={'grad': 'Gradiometers before SSS',
                           'mag': 'Magnetometers before SSS'})
evoked_after.plot(spatial_colors=True, ylim=ylim,
                  titles={'grad': 'SSS gradiometers',
                          'mag': 'SSS magnetometers'})
evoked_sss.plot(spatial_colors=True, ylim=ylim,
                titles={'grad': 'Maxfilter (TM) gradiometers',
                        'mag': 'Maxfilter (TM) magnetometers'})
开发者ID:mne-tools,项目名称:mne-biomag-group-demo,代码行数:32,代码来源:plot_maxfilter.py


注:本文中的mne.Epochs.plot方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。