当前位置: 首页>>代码示例>>Python>>正文


Python Epochs.pick_types方法代码示例

本文整理汇总了Python中mne.Epochs.pick_types方法的典型用法代码示例。如果您正苦于以下问题:Python Epochs.pick_types方法的具体用法?Python Epochs.pick_types怎么用?Python Epochs.pick_types使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.Epochs的用法示例。


在下文中一共展示了Epochs.pick_types方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_csp

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import pick_types [as 别名]
def test_csp():
    """Test Common Spatial Patterns algorithm on epochs
    """
    raw = io.read_raw_fif(raw_fname, preload=False)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[2:9:3]  # subselect channels -> disable proj!
    raw.add_proj([], remove_existing=True)
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True, proj=False)
    epochs_data = epochs.get_data()
    n_channels = epochs_data.shape[1]

    n_components = 3
    csp = CSP(n_components=n_components)

    csp.fit(epochs_data, epochs.events[:, -1])

    y = epochs.events[:, -1]
    X = csp.fit_transform(epochs_data, y)
    assert_true(csp.filters_.shape == (n_channels, n_channels))
    assert_true(csp.patterns_.shape == (n_channels, n_channels))
    assert_array_almost_equal(csp.fit(epochs_data, y).transform(epochs_data),
                              X)

    # test init exception
    assert_raises(ValueError, csp.fit, epochs_data,
                  np.zeros_like(epochs.events))
    assert_raises(ValueError, csp.fit, epochs, y)
    assert_raises(ValueError, csp.transform, epochs, y)

    csp.n_components = n_components
    sources = csp.transform(epochs_data)
    assert_true(sources.shape[1] == n_components)

    epochs.pick_types(meg='mag')

    # test plot patterns
    cmap = ('RdBu', True)
    components = np.arange(n_components)
    csp.plot_patterns(epochs.info, components=components, res=12,
                      show=False, cmap=cmap)

    # test plot filters
    csp.plot_filters(epochs.info, components=components, res=12,
                     show=False, cmap=cmap)

    # test covariance estimation methods (results should be roughly equal)
    csp_epochs = CSP(cov_est="epoch")
    csp_epochs.fit(epochs_data, y)
    for attr in ('filters_', 'patterns_'):
        corr = np.corrcoef(getattr(csp, attr).ravel(),
                           getattr(csp_epochs, attr).ravel())[0, 1]
        assert_true(corr >= 0.95, msg='%s < 0.95' % corr)

    # make sure error is raised for undefined estimation method
    csp_fail = CSP(cov_est="undefined")
    assert_raises(ValueError, csp_fail.fit, epochs_data, y)
开发者ID:chrismullins,项目名称:mne-python,代码行数:61,代码来源:test_csp.py

示例2: test_csp

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import pick_types [as 别名]
def test_csp():
    """Test Common Spatial Patterns algorithm on epochs
    """
    raw = io.Raw(raw_fname, preload=False)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[2:9:3]
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)
    epochs_data = epochs.get_data()
    n_channels = epochs_data.shape[1]

    n_components = 3
    csp = CSP(n_components=n_components)

    csp.fit(epochs_data, epochs.events[:, -1])

    y = epochs.events[:, -1]
    X = csp.fit_transform(epochs_data, y)
    assert_true(csp.filters_.shape == (n_channels, n_channels))
    assert_true(csp.patterns_.shape == (n_channels, n_channels))
    assert_array_almost_equal(csp.fit(epochs_data, y).transform(epochs_data),
                              X)

    # test init exception
    assert_raises(ValueError, csp.fit, epochs_data,
                  np.zeros_like(epochs.events))
    assert_raises(ValueError, csp.fit, epochs, y)
    assert_raises(ValueError, csp.transform, epochs, y)

    csp.n_components = n_components
    sources = csp.transform(epochs_data)
    assert_true(sources.shape[1] == n_components)

    epochs.pick_types(meg='mag', copy=False)

    # test plot patterns
    components = np.arange(n_components)
    csp.plot_patterns(epochs.info, components=components, res=12,
                      show=False)

    # test plot filters
    csp.plot_filters(epochs.info, components=components, res=12,
                     show=False)

    # test covariance estimation methods (results should be roughly equal)
    csp_epochs = CSP(cov_est="epoch")
    csp_epochs.fit(epochs_data, y)
    assert_array_almost_equal(csp.filters_, csp_epochs.filters_, -1)
    assert_array_almost_equal(csp.patterns_, csp_epochs.patterns_, -1)

    # make sure error is raised for undefined estimation method
    csp_fail = CSP(cov_est="undefined")
    assert_raises(ValueError, csp_fail.fit, epochs_data, y)
开发者ID:cmoutard,项目名称:mne-python,代码行数:57,代码来源:test_csp.py

示例3: test_ctf_plotting

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import pick_types [as 别名]
def test_ctf_plotting():
    """Test CTF topomap plotting."""
    raw = read_raw_fif(ctf_fname, preload=True)
    assert raw.compensation_grade == 3
    events = make_fixed_length_events(raw, duration=0.01)
    assert len(events) > 10
    evoked = Epochs(raw, events, tmin=0, tmax=0.01, baseline=None).average()
    assert get_current_comp(evoked.info) == 3
    # smoke test that compensation does not matter
    evoked.plot_topomap(time_unit='s')
    # better test that topomaps can still be used without plotting ref
    evoked.pick_types(meg=True, ref_meg=False)
    evoked.plot_topomap()
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:15,代码来源:test_topomap.py

示例4: test_csp

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import pick_types [as 别名]
def test_csp():
    """Test Common Spatial Patterns algorithm on epochs
    """
    raw = io.Raw(raw_fname, preload=False)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads")
    picks = picks[2:9:3]
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True)
    epochs_data = epochs.get_data()
    n_channels = epochs_data.shape[1]

    n_components = 3
    csp = CSP(n_components=n_components)

    csp.fit(epochs_data, epochs.events[:, -1])

    y = epochs.events[:, -1]
    X = csp.fit_transform(epochs_data, y)
    assert_true(csp.filters_.shape == (n_channels, n_channels))
    assert_true(csp.patterns_.shape == (n_channels, n_channels))
    assert_array_almost_equal(csp.fit(epochs_data, y).transform(epochs_data), X)

    # test init exception
    assert_raises(ValueError, csp.fit, epochs_data, np.zeros_like(epochs.events))
    assert_raises(ValueError, csp.fit, epochs, y)
    assert_raises(ValueError, csp.transform, epochs, y)

    csp.n_components = n_components
    sources = csp.transform(epochs_data)
    assert_true(sources.shape[1] == n_components)

    epochs.pick_types(meg="mag", copy=False)

    # test plot patterns
    components = np.arange(n_components)
    csp.plot_patterns(epochs.info, components=components, res=12, show=False)

    # test plot filters
    csp.plot_filters(epochs.info, components=components, res=12, show=False)
开发者ID:rajul,项目名称:mne-python,代码行数:41,代码来源:test_csp.py

示例5: test_csp

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import pick_types [as 别名]
def test_csp():
    """Test Common Spatial Patterns algorithm on epochs
    """
    raw = io.read_raw_fif(raw_fname, preload=False)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[2:12:3]  # subselect channels -> disable proj!
    raw.add_proj([], remove_existing=True)
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True, proj=False)
    epochs_data = epochs.get_data()
    n_channels = epochs_data.shape[1]
    y = epochs.events[:, -1]

    # Init
    assert_raises(ValueError, CSP, n_components='foo', norm_trace=False)
    for reg in ['foo', -0.1, 1.1]:
        assert_raises(ValueError, CSP, reg=reg, norm_trace=False)
    for reg in ['oas', 'ledoit_wolf', 0, 0.5, 1.]:
        CSP(reg=reg, norm_trace=False)
    for cov_est in ['foo', None]:
        assert_raises(ValueError, CSP, cov_est=cov_est, norm_trace=False)
    assert_raises(ValueError, CSP, norm_trace='foo')
    for cov_est in ['concat', 'epoch']:
        CSP(cov_est=cov_est, norm_trace=False)

    n_components = 3
    # Fit
    for norm_trace in [True, False]:
        csp = CSP(n_components=n_components, norm_trace=norm_trace)
        csp.fit(epochs_data, epochs.events[:, -1])

    assert_equal(len(csp.mean_), n_components)
    assert_equal(len(csp.std_), n_components)

    # Transform
    X = csp.fit_transform(epochs_data, y)
    sources = csp.transform(epochs_data)
    assert_true(sources.shape[1] == n_components)
    assert_true(csp.filters_.shape == (n_channels, n_channels))
    assert_true(csp.patterns_.shape == (n_channels, n_channels))
    assert_array_almost_equal(sources, X)

    # Test data exception
    assert_raises(ValueError, csp.fit, epochs_data,
                  np.zeros_like(epochs.events))
    assert_raises(ValueError, csp.fit, epochs, y)
    assert_raises(ValueError, csp.transform, epochs)

    # Test plots
    epochs.pick_types(meg='mag')
    cmap = ('RdBu', True)
    components = np.arange(n_components)
    for plot in (csp.plot_patterns, csp.plot_filters):
        plot(epochs.info, components=components, res=12, show=False, cmap=cmap)

    # Test with more than 2 classes
    epochs = Epochs(raw, events, tmin=tmin, tmax=tmax, picks=picks,
                    event_id=dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4),
                    baseline=(None, 0), proj=False, preload=True)
    epochs_data = epochs.get_data()
    n_channels = epochs_data.shape[1]

    n_channels = epochs_data.shape[1]
    for cov_est in ['concat', 'epoch']:
        csp = CSP(n_components=n_components, cov_est=cov_est, norm_trace=False)
        csp.fit(epochs_data, epochs.events[:, 2]).transform(epochs_data)
        assert_equal(len(csp._classes), 4)
        assert_array_equal(csp.filters_.shape, [n_channels, n_channels])
        assert_array_equal(csp.patterns_.shape, [n_channels, n_channels])

    # Test average power transform
    n_components = 2
    assert_true(csp.transform_into == 'average_power')
    feature_shape = [len(epochs_data), n_components]
    X_trans = dict()
    for log in (None, True, False):
        csp = CSP(n_components=n_components, log=log, norm_trace=False)
        assert_true(csp.log is log)
        Xt = csp.fit_transform(epochs_data, epochs.events[:, 2])
        assert_array_equal(Xt.shape, feature_shape)
        X_trans[str(log)] = Xt
    # log=None => log=True
    assert_array_almost_equal(X_trans['None'], X_trans['True'])
    # Different normalization return different transform
    assert_true(np.sum((X_trans['True'] - X_trans['False']) ** 2) > 1.)
    # Check wrong inputs
    assert_raises(ValueError, CSP, transform_into='average_power', log='foo')

    # Test csp space transform
    csp = CSP(transform_into='csp_space', norm_trace=False)
    assert_true(csp.transform_into == 'csp_space')
    for log in ('foo', True, False):
        assert_raises(ValueError, CSP, transform_into='csp_space', log=log,
                      norm_trace=False)
    n_components = 2
    csp = CSP(n_components=n_components, transform_into='csp_space',
              norm_trace=False)
    Xt = csp.fit(epochs_data, epochs.events[:, 2]).transform(epochs_data)
#.........这里部分代码省略.........
开发者ID:Hugo-W,项目名称:mne-python,代码行数:103,代码来源:test_csp.py

示例6: test_csp

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import pick_types [as 别名]
def test_csp():
    """Test Common Spatial Patterns algorithm on epochs
    """
    raw = io.read_raw_fif(raw_fname, preload=False)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[2:12:3]  # subselect channels -> disable proj!
    raw.add_proj([], remove_existing=True)
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True, proj=False)
    epochs_data = epochs.get_data()
    n_channels = epochs_data.shape[1]
    y = epochs.events[:, -1]

    # Init
    assert_raises(ValueError, CSP, n_components='foo')
    for reg in ['foo', -0.1, 1.1]:
        assert_raises(ValueError, CSP, reg=reg)
    for reg in ['oas', 'ledoit_wolf', 0, 0.5, 1.]:
        CSP(reg=reg)
    for cov_est in ['foo', None]:
        assert_raises(ValueError, CSP, cov_est=cov_est)
    for cov_est in ['concat', 'epoch']:
        CSP(cov_est=cov_est)

    n_components = 3
    csp = CSP(n_components=n_components)

    # Fit
    csp.fit(epochs_data, epochs.events[:, -1])
    assert_equal(len(csp.mean_), n_components)
    assert_equal(len(csp.std_), n_components)

    # Transform
    X = csp.fit_transform(epochs_data, y)
    sources = csp.transform(epochs_data)
    assert_true(sources.shape[1] == n_components)
    assert_true(csp.filters_.shape == (n_channels, n_channels))
    assert_true(csp.patterns_.shape == (n_channels, n_channels))
    assert_array_almost_equal(sources, X)

    # Test data exception
    assert_raises(ValueError, csp.fit, epochs_data,
                  np.zeros_like(epochs.events))
    assert_raises(ValueError, csp.fit, epochs, y)
    assert_raises(ValueError, csp.transform, epochs)

    # Test plots
    epochs.pick_types(meg='mag')
    cmap = ('RdBu', True)
    components = np.arange(n_components)
    for plot in (csp.plot_patterns, csp.plot_filters):
        plot(epochs.info, components=components, res=12, show=False, cmap=cmap)

    # Test covariance estimation methods (results should be roughly equal)
    np.random.seed(0)
    csp_epochs = CSP(cov_est="epoch")
    csp_epochs.fit(epochs_data, y)
    for attr in ('filters_', 'patterns_'):
        corr = np.corrcoef(getattr(csp, attr).ravel(),
                           getattr(csp_epochs, attr).ravel())[0, 1]
        assert_true(corr >= 0.94)

    # Test with more than 2 classes
    epochs = Epochs(raw, events, tmin=tmin, tmax=tmax, picks=picks,
                    event_id=dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4),
                    baseline=(None, 0), proj=False, preload=True)
    epochs_data = epochs.get_data()
    n_channels = epochs_data.shape[1]

    n_channels = epochs_data.shape[1]
    for cov_est in ['concat', 'epoch']:
        csp = CSP(n_components=n_components, cov_est=cov_est)
        csp.fit(epochs_data, epochs.events[:, 2]).transform(epochs_data)
        assert_equal(len(csp._classes), 4)
        assert_array_equal(csp.filters_.shape, [n_channels, n_channels])
        assert_array_equal(csp.patterns_.shape, [n_channels, n_channels])
开发者ID:JuliaSprenger,项目名称:mne-python,代码行数:80,代码来源:test_csp.py


注:本文中的mne.Epochs.pick_types方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。