本文整理汇总了Python中mne.Epochs.pick_types方法的典型用法代码示例。如果您正苦于以下问题:Python Epochs.pick_types方法的具体用法?Python Epochs.pick_types怎么用?Python Epochs.pick_types使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mne.Epochs
的用法示例。
在下文中一共展示了Epochs.pick_types方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_csp
# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import pick_types [as 别名]
def test_csp():
"""Test Common Spatial Patterns algorithm on epochs
"""
raw = io.read_raw_fif(raw_fname, preload=False)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
picks = picks[2:9:3] # subselect channels -> disable proj!
raw.add_proj([], remove_existing=True)
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True, proj=False)
epochs_data = epochs.get_data()
n_channels = epochs_data.shape[1]
n_components = 3
csp = CSP(n_components=n_components)
csp.fit(epochs_data, epochs.events[:, -1])
y = epochs.events[:, -1]
X = csp.fit_transform(epochs_data, y)
assert_true(csp.filters_.shape == (n_channels, n_channels))
assert_true(csp.patterns_.shape == (n_channels, n_channels))
assert_array_almost_equal(csp.fit(epochs_data, y).transform(epochs_data),
X)
# test init exception
assert_raises(ValueError, csp.fit, epochs_data,
np.zeros_like(epochs.events))
assert_raises(ValueError, csp.fit, epochs, y)
assert_raises(ValueError, csp.transform, epochs, y)
csp.n_components = n_components
sources = csp.transform(epochs_data)
assert_true(sources.shape[1] == n_components)
epochs.pick_types(meg='mag')
# test plot patterns
cmap = ('RdBu', True)
components = np.arange(n_components)
csp.plot_patterns(epochs.info, components=components, res=12,
show=False, cmap=cmap)
# test plot filters
csp.plot_filters(epochs.info, components=components, res=12,
show=False, cmap=cmap)
# test covariance estimation methods (results should be roughly equal)
csp_epochs = CSP(cov_est="epoch")
csp_epochs.fit(epochs_data, y)
for attr in ('filters_', 'patterns_'):
corr = np.corrcoef(getattr(csp, attr).ravel(),
getattr(csp_epochs, attr).ravel())[0, 1]
assert_true(corr >= 0.95, msg='%s < 0.95' % corr)
# make sure error is raised for undefined estimation method
csp_fail = CSP(cov_est="undefined")
assert_raises(ValueError, csp_fail.fit, epochs_data, y)
示例2: test_csp
# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import pick_types [as 别名]
def test_csp():
"""Test Common Spatial Patterns algorithm on epochs
"""
raw = io.Raw(raw_fname, preload=False)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
picks = picks[2:9:3]
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True)
epochs_data = epochs.get_data()
n_channels = epochs_data.shape[1]
n_components = 3
csp = CSP(n_components=n_components)
csp.fit(epochs_data, epochs.events[:, -1])
y = epochs.events[:, -1]
X = csp.fit_transform(epochs_data, y)
assert_true(csp.filters_.shape == (n_channels, n_channels))
assert_true(csp.patterns_.shape == (n_channels, n_channels))
assert_array_almost_equal(csp.fit(epochs_data, y).transform(epochs_data),
X)
# test init exception
assert_raises(ValueError, csp.fit, epochs_data,
np.zeros_like(epochs.events))
assert_raises(ValueError, csp.fit, epochs, y)
assert_raises(ValueError, csp.transform, epochs, y)
csp.n_components = n_components
sources = csp.transform(epochs_data)
assert_true(sources.shape[1] == n_components)
epochs.pick_types(meg='mag', copy=False)
# test plot patterns
components = np.arange(n_components)
csp.plot_patterns(epochs.info, components=components, res=12,
show=False)
# test plot filters
csp.plot_filters(epochs.info, components=components, res=12,
show=False)
# test covariance estimation methods (results should be roughly equal)
csp_epochs = CSP(cov_est="epoch")
csp_epochs.fit(epochs_data, y)
assert_array_almost_equal(csp.filters_, csp_epochs.filters_, -1)
assert_array_almost_equal(csp.patterns_, csp_epochs.patterns_, -1)
# make sure error is raised for undefined estimation method
csp_fail = CSP(cov_est="undefined")
assert_raises(ValueError, csp_fail.fit, epochs_data, y)
示例3: test_ctf_plotting
# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import pick_types [as 别名]
def test_ctf_plotting():
"""Test CTF topomap plotting."""
raw = read_raw_fif(ctf_fname, preload=True)
assert raw.compensation_grade == 3
events = make_fixed_length_events(raw, duration=0.01)
assert len(events) > 10
evoked = Epochs(raw, events, tmin=0, tmax=0.01, baseline=None).average()
assert get_current_comp(evoked.info) == 3
# smoke test that compensation does not matter
evoked.plot_topomap(time_unit='s')
# better test that topomaps can still be used without plotting ref
evoked.pick_types(meg=True, ref_meg=False)
evoked.plot_topomap()
示例4: test_csp
# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import pick_types [as 别名]
def test_csp():
"""Test Common Spatial Patterns algorithm on epochs
"""
raw = io.Raw(raw_fname, preload=False)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads")
picks = picks[2:9:3]
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True)
epochs_data = epochs.get_data()
n_channels = epochs_data.shape[1]
n_components = 3
csp = CSP(n_components=n_components)
csp.fit(epochs_data, epochs.events[:, -1])
y = epochs.events[:, -1]
X = csp.fit_transform(epochs_data, y)
assert_true(csp.filters_.shape == (n_channels, n_channels))
assert_true(csp.patterns_.shape == (n_channels, n_channels))
assert_array_almost_equal(csp.fit(epochs_data, y).transform(epochs_data), X)
# test init exception
assert_raises(ValueError, csp.fit, epochs_data, np.zeros_like(epochs.events))
assert_raises(ValueError, csp.fit, epochs, y)
assert_raises(ValueError, csp.transform, epochs, y)
csp.n_components = n_components
sources = csp.transform(epochs_data)
assert_true(sources.shape[1] == n_components)
epochs.pick_types(meg="mag", copy=False)
# test plot patterns
components = np.arange(n_components)
csp.plot_patterns(epochs.info, components=components, res=12, show=False)
# test plot filters
csp.plot_filters(epochs.info, components=components, res=12, show=False)
示例5: test_csp
# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import pick_types [as 别名]
def test_csp():
"""Test Common Spatial Patterns algorithm on epochs
"""
raw = io.read_raw_fif(raw_fname, preload=False)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
picks = picks[2:12:3] # subselect channels -> disable proj!
raw.add_proj([], remove_existing=True)
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True, proj=False)
epochs_data = epochs.get_data()
n_channels = epochs_data.shape[1]
y = epochs.events[:, -1]
# Init
assert_raises(ValueError, CSP, n_components='foo', norm_trace=False)
for reg in ['foo', -0.1, 1.1]:
assert_raises(ValueError, CSP, reg=reg, norm_trace=False)
for reg in ['oas', 'ledoit_wolf', 0, 0.5, 1.]:
CSP(reg=reg, norm_trace=False)
for cov_est in ['foo', None]:
assert_raises(ValueError, CSP, cov_est=cov_est, norm_trace=False)
assert_raises(ValueError, CSP, norm_trace='foo')
for cov_est in ['concat', 'epoch']:
CSP(cov_est=cov_est, norm_trace=False)
n_components = 3
# Fit
for norm_trace in [True, False]:
csp = CSP(n_components=n_components, norm_trace=norm_trace)
csp.fit(epochs_data, epochs.events[:, -1])
assert_equal(len(csp.mean_), n_components)
assert_equal(len(csp.std_), n_components)
# Transform
X = csp.fit_transform(epochs_data, y)
sources = csp.transform(epochs_data)
assert_true(sources.shape[1] == n_components)
assert_true(csp.filters_.shape == (n_channels, n_channels))
assert_true(csp.patterns_.shape == (n_channels, n_channels))
assert_array_almost_equal(sources, X)
# Test data exception
assert_raises(ValueError, csp.fit, epochs_data,
np.zeros_like(epochs.events))
assert_raises(ValueError, csp.fit, epochs, y)
assert_raises(ValueError, csp.transform, epochs)
# Test plots
epochs.pick_types(meg='mag')
cmap = ('RdBu', True)
components = np.arange(n_components)
for plot in (csp.plot_patterns, csp.plot_filters):
plot(epochs.info, components=components, res=12, show=False, cmap=cmap)
# Test with more than 2 classes
epochs = Epochs(raw, events, tmin=tmin, tmax=tmax, picks=picks,
event_id=dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4),
baseline=(None, 0), proj=False, preload=True)
epochs_data = epochs.get_data()
n_channels = epochs_data.shape[1]
n_channels = epochs_data.shape[1]
for cov_est in ['concat', 'epoch']:
csp = CSP(n_components=n_components, cov_est=cov_est, norm_trace=False)
csp.fit(epochs_data, epochs.events[:, 2]).transform(epochs_data)
assert_equal(len(csp._classes), 4)
assert_array_equal(csp.filters_.shape, [n_channels, n_channels])
assert_array_equal(csp.patterns_.shape, [n_channels, n_channels])
# Test average power transform
n_components = 2
assert_true(csp.transform_into == 'average_power')
feature_shape = [len(epochs_data), n_components]
X_trans = dict()
for log in (None, True, False):
csp = CSP(n_components=n_components, log=log, norm_trace=False)
assert_true(csp.log is log)
Xt = csp.fit_transform(epochs_data, epochs.events[:, 2])
assert_array_equal(Xt.shape, feature_shape)
X_trans[str(log)] = Xt
# log=None => log=True
assert_array_almost_equal(X_trans['None'], X_trans['True'])
# Different normalization return different transform
assert_true(np.sum((X_trans['True'] - X_trans['False']) ** 2) > 1.)
# Check wrong inputs
assert_raises(ValueError, CSP, transform_into='average_power', log='foo')
# Test csp space transform
csp = CSP(transform_into='csp_space', norm_trace=False)
assert_true(csp.transform_into == 'csp_space')
for log in ('foo', True, False):
assert_raises(ValueError, CSP, transform_into='csp_space', log=log,
norm_trace=False)
n_components = 2
csp = CSP(n_components=n_components, transform_into='csp_space',
norm_trace=False)
Xt = csp.fit(epochs_data, epochs.events[:, 2]).transform(epochs_data)
#.........这里部分代码省略.........
示例6: test_csp
# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import pick_types [as 别名]
def test_csp():
"""Test Common Spatial Patterns algorithm on epochs
"""
raw = io.read_raw_fif(raw_fname, preload=False)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
picks = picks[2:12:3] # subselect channels -> disable proj!
raw.add_proj([], remove_existing=True)
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True, proj=False)
epochs_data = epochs.get_data()
n_channels = epochs_data.shape[1]
y = epochs.events[:, -1]
# Init
assert_raises(ValueError, CSP, n_components='foo')
for reg in ['foo', -0.1, 1.1]:
assert_raises(ValueError, CSP, reg=reg)
for reg in ['oas', 'ledoit_wolf', 0, 0.5, 1.]:
CSP(reg=reg)
for cov_est in ['foo', None]:
assert_raises(ValueError, CSP, cov_est=cov_est)
for cov_est in ['concat', 'epoch']:
CSP(cov_est=cov_est)
n_components = 3
csp = CSP(n_components=n_components)
# Fit
csp.fit(epochs_data, epochs.events[:, -1])
assert_equal(len(csp.mean_), n_components)
assert_equal(len(csp.std_), n_components)
# Transform
X = csp.fit_transform(epochs_data, y)
sources = csp.transform(epochs_data)
assert_true(sources.shape[1] == n_components)
assert_true(csp.filters_.shape == (n_channels, n_channels))
assert_true(csp.patterns_.shape == (n_channels, n_channels))
assert_array_almost_equal(sources, X)
# Test data exception
assert_raises(ValueError, csp.fit, epochs_data,
np.zeros_like(epochs.events))
assert_raises(ValueError, csp.fit, epochs, y)
assert_raises(ValueError, csp.transform, epochs)
# Test plots
epochs.pick_types(meg='mag')
cmap = ('RdBu', True)
components = np.arange(n_components)
for plot in (csp.plot_patterns, csp.plot_filters):
plot(epochs.info, components=components, res=12, show=False, cmap=cmap)
# Test covariance estimation methods (results should be roughly equal)
np.random.seed(0)
csp_epochs = CSP(cov_est="epoch")
csp_epochs.fit(epochs_data, y)
for attr in ('filters_', 'patterns_'):
corr = np.corrcoef(getattr(csp, attr).ravel(),
getattr(csp_epochs, attr).ravel())[0, 1]
assert_true(corr >= 0.94)
# Test with more than 2 classes
epochs = Epochs(raw, events, tmin=tmin, tmax=tmax, picks=picks,
event_id=dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4),
baseline=(None, 0), proj=False, preload=True)
epochs_data = epochs.get_data()
n_channels = epochs_data.shape[1]
n_channels = epochs_data.shape[1]
for cov_est in ['concat', 'epoch']:
csp = CSP(n_components=n_components, cov_est=cov_est)
csp.fit(epochs_data, epochs.events[:, 2]).transform(epochs_data)
assert_equal(len(csp._classes), 4)
assert_array_equal(csp.filters_.shape, [n_channels, n_channels])
assert_array_equal(csp.patterns_.shape, [n_channels, n_channels])