当前位置: 首页>>代码示例>>Python>>正文


Python Epochs.drop_bad方法代码示例

本文整理汇总了Python中mne.Epochs.drop_bad方法的典型用法代码示例。如果您正苦于以下问题:Python Epochs.drop_bad方法的具体用法?Python Epochs.drop_bad怎么用?Python Epochs.drop_bad使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.Epochs的用法示例。


在下文中一共展示了Epochs.drop_bad方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_events_long

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import drop_bad [as 别名]
def test_events_long():
    """Test events."""
    data_path = testing.data_path()
    raw_fname = data_path + '/MEG/sample/sample_audvis_trunc_raw.fif'
    raw = read_raw_fif(raw_fname, preload=True)
    raw_tmin, raw_tmax = 0, 90

    tmin, tmax = -0.2, 0.5
    event_id = dict(aud_l=1, vis_l=3)

    # select gradiometers
    picks = pick_types(raw.info, meg='grad', eeg=False, eog=True,
                       stim=True, exclude=raw.info['bads'])

    # load data with usual Epochs for later verification
    raw = concatenate_raws([raw, raw.copy(), raw.copy(), raw.copy(),
                            raw.copy(), raw.copy()])
    assert 110 < raw.times[-1] < 130
    raw_cropped = raw.copy().crop(raw_tmin, raw_tmax)
    events_offline = find_events(raw_cropped)
    epochs_offline = Epochs(raw_cropped, events_offline, event_id=event_id,
                            tmin=tmin, tmax=tmax, picks=picks, decim=1,
                            reject=dict(grad=4000e-13, eog=150e-6),
                            baseline=None)
    epochs_offline.drop_bad()

    # create the mock-client object
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks, decim=1,
                         reject=dict(grad=4000e-13, eog=150e-6), baseline=None,
                         isi_max=1.)

    rt_epochs.start()
    rt_client.send_data(rt_epochs, picks, tmin=raw_tmin, tmax=raw_tmax,
                        buffer_size=1000)

    expected_events = epochs_offline.events.copy()
    expected_events[:, 0] = expected_events[:, 0] - raw_cropped.first_samp
    assert np.all(expected_events[:, 0] <=
                  (raw_tmax - tmax) * raw.info['sfreq'])
    assert_array_equal(rt_epochs.events, expected_events)
    assert len(rt_epochs) == len(epochs_offline)

    data_picks = pick_types(epochs_offline.info, meg='grad', eeg=False,
                            eog=True,
                            stim=False, exclude=raw.info['bads'])

    for ev_num, ev in enumerate(rt_epochs.iter_evoked()):
        if ev_num == 0:
            X_rt = ev.data[None, data_picks, :]
            y_rt = int(ev.comment)  # comment attribute contains the event_id
        else:
            X_rt = np.concatenate((X_rt, ev.data[None, data_picks, :]), axis=0)
            y_rt = np.append(y_rt, int(ev.comment))

    X_offline = epochs_offline.get_data()[:, data_picks, :]
    y_offline = epochs_offline.events[:, 2]
    assert_array_equal(X_rt, X_offline)
    assert_array_equal(y_rt, y_offline)
开发者ID:SherazKhan,项目名称:mne-python,代码行数:61,代码来源:test_mockclient.py

示例2: test_fieldtrip_rtepochs

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import drop_bad [as 别名]
def test_fieldtrip_rtepochs(free_tcp_port, tmpdir):
    """Test FieldTrip RtEpochs."""
    raw_tmax = 7
    raw = read_raw_fif(raw_fname, preload=True)
    raw.crop(tmin=0, tmax=raw_tmax)
    events_offline = find_events(raw, stim_channel='STI 014')
    event_id = list(np.unique(events_offline[:, 2]))
    tmin, tmax = -0.2, 0.5
    epochs_offline = Epochs(raw, events_offline, event_id=event_id,
                            tmin=tmin, tmax=tmax)
    epochs_offline.drop_bad()
    isi_max = (np.max(np.diff(epochs_offline.events[:, 0])) /
               raw.info['sfreq']) + 1.0

    kill_signal = _start_buffer_thread(free_tcp_port)

    try:
        data_rt = None
        events_ids_rt = None
        with pytest.warns(RuntimeWarning, match='Trying to guess it'):
            with FieldTripClient(host='localhost', port=free_tcp_port,
                                 tmax=raw_tmax, wait_max=2) as rt_client:
                # get measurement info guessed by MNE-Python
                raw_info = rt_client.get_measurement_info()
                assert ([ch['ch_name'] for ch in raw_info['chs']] ==
                        [ch['ch_name'] for ch in raw.info['chs']])

                # create the real-time epochs object
                epochs_rt = RtEpochs(rt_client, event_id, tmin, tmax,
                                     stim_channel='STI 014', isi_max=isi_max)
                epochs_rt.start()

                time.sleep(0.5)
                for ev_num, ev in enumerate(epochs_rt.iter_evoked()):
                    if ev_num == 0:
                        data_rt = ev.data[None, :, :]
                        events_ids_rt = int(
                            ev.comment)  # comment attribute contains event_id
                    else:
                        data_rt = np.concatenate(
                            (data_rt, ev.data[None, :, :]), axis=0)
                        events_ids_rt = np.append(events_ids_rt,
                                                  int(ev.comment))

                _call_base_epochs_public_api(epochs_rt, tmpdir)
                epochs_rt.stop(stop_receive_thread=True)

        assert_array_equal(events_ids_rt, epochs_rt.events[:, 2])
        assert_array_equal(data_rt, epochs_rt.get_data())
        assert len(epochs_rt) == len(epochs_offline)
        assert_array_equal(events_ids_rt, epochs_offline.events[:, 2])
        assert_allclose(epochs_rt.get_data(), epochs_offline.get_data(),
                        rtol=1.e-5, atol=1.e-8)  # defaults of np.isclose
    finally:
        kill_signal.put(False)  # stop the buffer
开发者ID:SherazKhan,项目名称:mne-python,代码行数:57,代码来源:test_fieldtrip_client.py

示例3: test_source_psd_epochs

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import drop_bad [as 别名]
def test_source_psd_epochs():
    """Test multi-taper source PSD computation in label from epochs."""
    raw = read_raw_fif(fname_data)
    inverse_operator = read_inverse_operator(fname_inv)
    label = read_label(fname_label)

    event_id, tmin, tmax = 1, -0.2, 0.5
    lambda2, method = 1. / 9., 'dSPM'
    bandwidth = 8.
    fmin, fmax = 0, 100

    picks = pick_types(raw.info, meg=True, eeg=False, stim=True,
                       ecg=True, eog=True, include=['STI 014'],
                       exclude='bads')
    reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)

    events = find_events(raw, stim_channel='STI 014')
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=reject)

    # only look at one epoch
    epochs.drop_bad()
    one_epochs = epochs[:1]

    inv = prepare_inverse_operator(inverse_operator, nave=1,
                                   lambda2=1. / 9., method="dSPM")
    # return list
    stc_psd = compute_source_psd_epochs(one_epochs, inv,
                                        lambda2=lambda2, method=method,
                                        pick_ori="normal", label=label,
                                        bandwidth=bandwidth,
                                        fmin=fmin, fmax=fmax,
                                        prepared=True)[0]

    # return generator
    stcs = compute_source_psd_epochs(one_epochs, inv,
                                     lambda2=lambda2, method=method,
                                     pick_ori="normal", label=label,
                                     bandwidth=bandwidth,
                                     fmin=fmin, fmax=fmax,
                                     return_generator=True,
                                     prepared=True)

    for stc in stcs:
        stc_psd_gen = stc

    assert_array_almost_equal(stc_psd.data, stc_psd_gen.data)

    # compare with direct computation
    stc = apply_inverse_epochs(one_epochs, inv,
                               lambda2=lambda2, method=method,
                               pick_ori="normal", label=label,
                               prepared=True)[0]

    sfreq = epochs.info['sfreq']
    psd, freqs = _psd_multitaper(stc.data, sfreq=sfreq, bandwidth=bandwidth,
                                 fmin=fmin, fmax=fmax)

    assert_array_almost_equal(psd, stc_psd.data)
    assert_array_almost_equal(freqs, stc_psd.times)

    # Check corner cases caused by tiny bandwidth
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        compute_source_psd_epochs(one_epochs, inv,
                                  lambda2=lambda2, method=method,
                                  pick_ori="normal", label=label,
                                  bandwidth=0.01, low_bias=True,
                                  fmin=fmin, fmax=fmax,
                                  return_generator=False,
                                  prepared=True)
        compute_source_psd_epochs(one_epochs, inv,
                                  lambda2=lambda2, method=method,
                                  pick_ori="normal", label=label,
                                  bandwidth=0.01, low_bias=False,
                                  fmin=fmin, fmax=fmax,
                                  return_generator=False,
                                  prepared=True)
    assert_true(len(w) >= 2)
    assert_true(any('not properly use' in str(ww.message) for ww in w))
    assert_true(any('Bandwidth too small' in str(ww.message) for ww in w))
开发者ID:deep-introspection,项目名称:mne-python,代码行数:83,代码来源:test_time_frequency.py

示例4: enumerate

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import drop_bad [as 别名]
freq_scores = np.zeros((n_freqs - 1,))

# Loop through each frequency range of interest
for freq, (fmin, fmax) in enumerate(freq_ranges):

    # Infer window size based on the frequency being used
    w_size = n_cycles / ((fmax + fmin) / 2.)  # in seconds

    # Apply band-pass filter to isolate the specified frequencies
    raw_filter = raw.copy().filter(fmin, fmax, n_jobs=1, fir_design='firwin',
                                   skip_by_annotation='edge')

    # Extract epochs from filtered data, padded by window size
    epochs = Epochs(raw_filter, events, event_id, tmin - w_size, tmax + w_size,
                    proj=False, baseline=None, preload=True)
    epochs.drop_bad()
    y = le.fit_transform(epochs.events[:, 2])

    X = epochs.get_data()

    # Save mean scores over folds for each frequency and time window
    freq_scores[freq] = np.mean(cross_val_score(estimator=clf, X=X, y=y,
                                                scoring='roc_auc', cv=cv,
                                                n_jobs=1), axis=0)

###############################################################################
# Plot frequency results

plt.bar(freqs[:-1], freq_scores, width=np.diff(freqs)[0],
        align='edge', edgecolor='black')
plt.xticks(freqs)
开发者ID:HSMin,项目名称:mne-python,代码行数:33,代码来源:plot_decoding_csp_timefreq.py

示例5: test_source_psd_epochs

# 需要导入模块: from mne import Epochs [as 别名]
# 或者: from mne.Epochs import drop_bad [as 别名]
def test_source_psd_epochs():
    """Test multi-taper source PSD computation in label from epochs."""
    raw = read_raw_fif(fname_data)
    inverse_operator = read_inverse_operator(fname_inv)
    label = read_label(fname_label)

    event_id, tmin, tmax = 1, -0.2, 0.5
    lambda2, method = 1. / 9., 'dSPM'
    bandwidth = 8.
    fmin, fmax = 0, 100

    picks = pick_types(raw.info, meg=True, eeg=False, stim=True,
                       ecg=True, eog=True, include=['STI 014'],
                       exclude='bads')
    reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)

    events = find_events(raw, stim_channel='STI 014')
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=reject)

    # only look at one epoch
    epochs.drop_bad()
    one_epochs = epochs[:1]

    inv = prepare_inverse_operator(inverse_operator, nave=1,
                                   lambda2=1. / 9., method="dSPM")
    # return list
    stc_psd = compute_source_psd_epochs(one_epochs, inv,
                                        lambda2=lambda2, method=method,
                                        pick_ori="normal", label=label,
                                        bandwidth=bandwidth,
                                        fmin=fmin, fmax=fmax,
                                        prepared=True)[0]

    # return generator
    stcs = compute_source_psd_epochs(one_epochs, inv,
                                     lambda2=lambda2, method=method,
                                     pick_ori="normal", label=label,
                                     bandwidth=bandwidth,
                                     fmin=fmin, fmax=fmax,
                                     return_generator=True,
                                     prepared=True)

    for stc in stcs:
        stc_psd_gen = stc

    assert_allclose(stc_psd.data, stc_psd_gen.data, atol=1e-7)

    # compare with direct computation
    stc = apply_inverse_epochs(one_epochs, inv,
                               lambda2=lambda2, method=method,
                               pick_ori="normal", label=label,
                               prepared=True)[0]

    sfreq = epochs.info['sfreq']
    psd, freqs = psd_array_multitaper(stc.data, sfreq=sfreq,
                                      bandwidth=bandwidth, fmin=fmin,
                                      fmax=fmax)

    assert_allclose(psd, stc_psd.data, atol=1e-7)
    assert_allclose(freqs, stc_psd.times)

    # Check corner cases caused by tiny bandwidth
    with pytest.raises(ValueError, match='use a value of at least'):
        compute_source_psd_epochs(
            one_epochs, inv, lambda2=lambda2, method=method,
            pick_ori="normal", label=label, bandwidth=0.01, low_bias=True,
            fmin=fmin, fmax=fmax, return_generator=False, prepared=True)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:70,代码来源:test_time_frequency.py


注:本文中的mne.Epochs.drop_bad方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。