当前位置: 首页>>代码示例>>Python>>正文


Python MLP.scores方法代码示例

本文整理汇总了Python中mlp.MLP.scores方法的典型用法代码示例。如果您正苦于以下问题:Python MLP.scores方法的具体用法?Python MLP.scores怎么用?Python MLP.scores使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mlp.MLP的用法示例。


在下文中一共展示了MLP.scores方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from mlp import MLP [as 别名]
# 或者: from mlp.MLP import scores [as 别名]

#.........这里部分代码省略.........
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    training_accuracy_model = theano.function(
        inputs=[index],
        outputs=classifier.accuracy(y),
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    # compiling a Theano function that computes the predictions on the
    # training data
    training_predictions_model = theano.function(
        inputs=[index],
        outputs=classifier.predictions(),
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
        }
    )

    validation_predictions_model = theano.function(
        inputs=[index],
        outputs=classifier.predictions(),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
        }
    )

    # compiling a Theano function that computes the predictions on the
    # training data
    training_scores_model = theano.function(
        inputs=[index],
        outputs=classifier.scores(),
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
        }
    )

    validation_scores_model = theano.function(
        inputs=[index],
        outputs=classifier.scores(),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
        }
    )

    # start-snippet-5
    # compute the gradient of cost with respect to theta (sotred in params)
    # the resulting gradients will be stored in a list gparams
    gparams = [T.grad(cost, param) for param in classifier.params]

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs

    # given two lists of the same length, A = [a1, a2, a3, a4] and
    # B = [b1, b2, b3, b4], zip generates a list C of same size, where each
    # element is a pair formed from the two lists :
    #    C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
    updates = [
        (param, param - learning_rate * gparam)
        for param, gparam in zip(classifier.params, gparams)
    ]
开发者ID:perellonieto,项目名称:deep_calibration,代码行数:69,代码来源:train.py


注:本文中的mlp.MLP.scores方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。