当前位置: 首页>>代码示例>>Python>>正文


Python MLP.predict方法代码示例

本文整理汇总了Python中mlp.MLP.predict方法的典型用法代码示例。如果您正苦于以下问题:Python MLP.predict方法的具体用法?Python MLP.predict怎么用?Python MLP.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mlp.MLP的用法示例。


在下文中一共展示了MLP.predict方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from mlp import MLP [as 别名]
# 或者: from mlp.MLP import predict [as 别名]
class CWS:
    def __init__(self, s):
	self.mlp = MLP(s['ne'], s['de'], s['win'], s['nh'], 4, s['L2_reg'], np.random.RandomState(s['seed']))
	self.s = s

    def fit(self, lex, label):
	s = self.s
	n_sentences = len(lex)
	n_train = int(n_sentences * (1. - s['valid_size']))
	s['clr'] = s['lr']
	best_f = 0
	for e in xrange(s['n_epochs']):
	    shuffle([lex, label], s['seed'])
	    train_lex, valid_lex = lex[:n_train], lex[n_train:]
	    train_label, valid_label = label[:n_train], label[n_train:]
	    tic = time.time()
	    cost = 0
	    for i in xrange(n_train):
		if len(train_lex[i]) == 2: continue
		words = np.asarray(contextwin(train_lex[i], s['win']), dtype = 'int32')
		labels = [0] + train_label[i] + [0]
		y_pred = self.mlp.predict(words)
		cost += self.mlp.fit(words, [0]+y_pred, [0]+labels, s['clr'])
		self.mlp.normalize()
		if s['verbose']:
		    print '[learning] epoch %i >> %2.2f%%' % (e+1, (i+1)*100./n_train), 'completed in %s << \r' % time_format(time.time() - tic),
		    sys.stdout.flush()
	    print '[learning] epoch %i >> cost = %f' % (e+1, cost / n_train), ', %s used' % time_format(time.time() - tic)
	    pred_y = self.predict(valid_lex)
	    p, r, f = evaluate(pred_y, valid_label)
	    print '           P: %2.2f%% R: %2.2f%% F: %2.2f%%' % (p*100., r*100., f*100.)
	    '''
	    if f > best_f:
		best_f = f
		self.save()
	    '''

    def predict(self, lex):
	s = self.s
	y = [self.mlp.predict(np.asarray(contextwin(x, s['win'])).astype('int32'))[1:-1] for x in lex]
	return y

    def save(self):
	if not os.path.exists('params'): os.mkdir('params')
	self.mlp.save() 

    def load(self):
	self.mlp.load()
开发者ID:zbxzc35,项目名称:cws,代码行数:50,代码来源:cws.py

示例2: testMLP

# 需要导入模块: from mlp import MLP [as 别名]
# 或者: from mlp.MLP import predict [as 别名]
	def testMLP(self):
		'''
		Using MLP of one hidden layer and one softmax layer
		'''
		conf_filename = './snippet_mlp.conf'
		start_time = time.time()
		configer = MLPConfiger(conf_filename)
		mlpnet = MLP(configer, verbose=True)
		end_time = time.time()
		pprint('Time used to build the architecture of MLP: %f seconds' % (end_time-start_time))
		# Training
		start_time = time.time()
		for i in xrange(configer.nepoch):
			cost, accuracy = mlpnet.train(self.snippet_train_set, self.snippet_train_label)
			pprint('epoch %d, cost = %f, accuracy = %f' % (i, cost, accuracy))
		end_time = time.time()
		pprint('Time used for training MLP network on Snippet task: %f minutes' % ((end_time-start_time)/60))
		# Test
		test_size = self.snippet_test_label.shape[0]
		prediction = mlpnet.predict(self.snippet_test_set)
		accuracy = np.sum(prediction == self.snippet_test_label) / float(test_size)
		pprint('Test accuracy: %f' % accuracy)
开发者ID:appscluster,项目名称:sentiment-CNN,代码行数:24,代码来源:exp_snippet.py

示例3: testMLP

# 需要导入模块: from mlp import MLP [as 别名]
# 或者: from mlp.MLP import predict [as 别名]
	def testMLP(self):
		'''
		Sentiment analysis task for sentence representation using MLP, 
		with one hidden layer and one softmax layer.
		'''
		conf_filename = './sentiment_mlp.conf'
		start_time = time.time()
		configer = MLPConfiger(conf_filename)
		mlpnet = MLP(configer, verbose=True)
		end_time = time.time()
		pprint('Time used to build the architecture of MLP: %f seconds.' % (end_time-start_time))
		# Training
		start_time = time.time()
		for i in xrange(configer.nepoch):
			rate = 2.0 / ((1.0 + i/500) ** 2)
			cost, accuracy = mlpnet.train(self.senti_train_set, self.senti_train_label, rate)
			pprint('epoch %d, cost = %f, accuracy = %f' % (i, cost, accuracy))
		end_time = time.time()
		pprint('Time used for training MLP network on Sentiment analysis task: %f minutes.' % ((end_time-start_time)/60))
		# Test
		prediction = mlpnet.predict(self.senti_test_set)
		accuracy = np.sum(prediction == self.senti_test_label) / float(self.test_size)
		pprint('Test accuracy: %f' % accuracy)
开发者ID:appscluster,项目名称:sentiment-CNN,代码行数:25,代码来源:exp_sentiment.py

示例4:

# 需要导入模块: from mlp import MLP [as 别名]
# 或者: from mlp.MLP import predict [as 别名]
		model.learning_rate,
		model.momentum,
		model.dropout_p_input,
		model.dropout_p_hidden))

	# check if this configuration has already been tried
	if os.path.exists(fname):
		continue
	# if not continue with training
	print 'Trying the following configuration:', try_params
	t0 = time.time()
	train_cost_history = model.fit(train_x, train_y, epochs=25)
	print 'Training completed in {:.2f} sec'.format(time.time() - t0)

	# and validation
	valid_y_pred = model.predict(valid_x)
	valid_accuracy = np.sum(valid_y_pred == valid_y, dtype=np.float32) / valid_y.shape[0]
	print 'Validation accuracy: {:.2f}'.format(valid_accuracy * 100)

	if best_valid is None or best_valid < valid_accuracy:
		best_valid = valid_accuracy
		best_conf = try_params
		test_y_pred = model.predict(test_x)
		best_test = np.sum(test_y_pred == test_y, dtype=np.float32) / test_y.shape[0]

	# finally save the training costs and the validation accuracy to disk
	np.savez_compressed(fname, train_cost=train_cost_history, valid_accuracy=valid_accuracy)
	n_tried += 1

print 'Best configuration:', best_conf
print 'Best validation accuracy: {:.2f}'.format(best_valid * 100)
开发者ID:aciccarelli,项目名称:DNN_Lab_UPF,代码行数:33,代码来源:mlp_opt.py

示例5: splitMomentDataByFeatureAndLabel

# 需要导入模块: from mlp import MLP [as 别名]
# 或者: from mlp.MLP import predict [as 别名]
from loaddata import splitMomentDataByFeatureAndLabel
from mlp import MLP

import numpy
from sklearn.cross_validation import train_test_split
from sklearn.cross_validation import cross_val_score
userid=1
device=1
featureCondition=16
classificationCondition=1
offsetFeatureOn=False
my_test_size = 0.3
my_random_state = 42

data, label = splitMomentDataByFeatureAndLabel(userid, device, featureCondition, classificationCondition, offsetFeatureOn=offsetFeatureOn)
data = data.astype(float)
label = label.astype(int)
trainingData, testData, trainingLabel, testLabel = train_test_split(data, label, test_size=my_test_size, random_state=my_random_state)


clf = MLP(n_hidden=10, n_deep=3, l1_norm=0, drop=0.1, verbose=0).fit(trainingData, trainingLabel)

print testLabel
print clf.predict(testData)



开发者ID:changkun,项目名称:AugmentedTouch,代码行数:26,代码来源:mlpMoment.py

示例6: main

# 需要导入模块: from mlp import MLP [as 别名]
# 或者: from mlp.MLP import predict [as 别名]
def main(argv):

    # Handle command line arguments
    # 0. just use the default percent of the
    #   data set for training (70%)
    #
    # 1. should be a number from 0 to 1
    #   (0 <= x < 1) which determines what
    #   percent of the data set should be
    #   used for training
    #
    # 2. first argument is the filename of
    #   the file containing the data set
    tpercent = 0.7
    filename = ""

    if len(argv) == 2:
        tpercent = float(argv[1])
        # make sure it's in the legal range
        if tpercent < 0.0:
            tpercent *= -1
        while tpercent >= 1.0:
            tpercent -= 1.0

    elif len(argv) == 3:
        filename = argv[1]

        tpercent = float(argv[2])
        # make sure it's in the legal range
        if tpercent < 0.0:
            tpercent *= -1
        while tpercent >= 1.0:
            tpercent -= 1.0

    # get the time for use as a random seed
    #   this can be replaced by something else,
    #   but using the time will allow for a
    #   different shuffle each time
    seed = int(time.time())

    if filename == "":
        iris = datasets.load_iris()
        data = iris.data
        targets = iris.target

    # load from a file instead if that's the correct approach
    else:
        csv = np.genfromtxt(filename, delimiter=",")
        numcols = len(csv[0])
        data = csv[:, : numcols - 1]  # the first columns are the data
        targets = csv[:, numcols - 1]  # the last column is the targets

    # shuffle based on the time
    #   this uses the same seed (the time)
    #   in both the data and the targets so
    #   they match up after the shuffle
    np.random.seed(seed)
    np.random.shuffle(data)
    # reset the seed
    np.random.seed(seed)
    np.random.shuffle(targets)

    # determine the correct sizes of the sets
    tsize = int(tpercent * targets.size)
    psize = targets.size - tsize

    tdata = data[:tsize]
    pdata = data[tsize : tsize + psize]

    ttargets = targets[:tsize]
    ptargets = targets[tsize : tsize + psize]

    # train the classifier
    # classifier = KnnClassifier(3)
    # classifier = KNeighborsClassifier(n_neighbors=3)
    # classifier = DTreeClassifier()
    # classifier = tree.DecisionTreeClassifier()
    classifier = MLP((3, 3), 0.2, 30)
    classifier.fit(tdata, ttargets)

    # see how it did
    numcorrect = 0
    predictions = classifier.predict(pdata)
    for i in range(psize):
        if predictions[i] == ptargets[i]:
            numcorrect += 1

    percentcorrect = (numcorrect / psize) * 100.0

    print("Completed. Predicted", str(percentcorrect), "% correctly.")
开发者ID:justinrixx,项目名称:Classifiers,代码行数:92,代码来源:main.py


注:本文中的mlp.MLP.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。