本文整理汇总了Python中mbwind.System.solve_reactions方法的典型用法代码示例。如果您正苦于以下问题:Python System.solve_reactions方法的具体用法?Python System.solve_reactions怎么用?Python System.solve_reactions使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mbwind.System
的用法示例。
在下文中一共展示了System.solve_reactions方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_call
# 需要导入模块: from mbwind import System [as 别名]
# 或者: from mbwind.System import solve_reactions [as 别名]
def test_call(self):
s = System()
c = RigidConnection('conn', [1, 0, 0])
h = Hinge('hinge', [0, 1, 0])
b = RigidBody('body', 1)
s.add_leaf(h)
h.add_leaf(c)
c.add_leaf(b)
s.setup()
# Set hinge angle
h.xstrain[0] = 0.82
h.vstrain[0] = 1.2
h.astrain[0] = -0.3
s.update_kinematics()
s.solve_reactions()
# Test load outputs
out = LoadOutput('node-1')
assert_array_equal(out(s), s.joint_reactions['node-1'])
out = LoadOutput('node-1', local=True)
F = s.joint_reactions['node-1']
assert_array_equal(out(s), np.r_[np.dot(b.Rp.T, F[:3]),
np.dot(b.Rp.T, F[3:])])
示例2: test_solve_reactions
# 需要导入模块: from mbwind import System [as 别名]
# 或者: from mbwind.System import solve_reactions [as 别名]
def test_solve_reactions(self):
# Check it calls the Element method in the right order: down
# the tree from leaves to base. It must also reset reactions.
s = System()
c0 = RigidConnection('c0')
c1 = RigidConnection('c1')
c2 = RigidConnection('c2')
b1 = RigidBody('b1', 1)
b2 = RigidBody('b2', 1)
s.add_leaf(c0)
c0.add_leaf(c1)
c0.add_leaf(c2)
c1.add_leaf(b1)
c2.add_leaf(b2)
s.setup()
# Check elements' iter_reactions() are called
def mock_iter_reactions(element):
calls.append(element)
calls = []
import types
for el in s.elements.values():
el.iter_reactions = types.MethodType(mock_iter_reactions, el)
# Test
s.joint_reactions[:] = 3
s.solve_reactions()
self.assertEqual(calls, [b2, c2, b1, c1, c0])
assert_aae(s.joint_reactions, 0)
示例3: TestReactionForcesForCentrifugalForce
# 需要导入模块: from mbwind import System [as 别名]
# 或者: from mbwind.System import solve_reactions [as 别名]
class TestReactionForcesForCentrifugalForce(unittest.TestCase):
"""
System
------
A rigid body with offset mass, attached to a spinning hinge.
Tests
-----
Check centrifugal force reaction on hinge is in correct direction.
"""
mass = 5.0 # kg
offset = 3.2 # m
def setUp(self):
# Rigid body with offset centre of mass
self.body = RigidBody("body", self.mass, Xc=[self.offset, 0, 0])
# Hinge with axis along Z axis
self.hinge = Hinge("hinge", [0, 0, 1])
# Build system
self.system = System()
self.system.add_leaf(self.hinge)
self.hinge.add_leaf(self.body)
self.system.setup()
self.system.update_kinematics() # Set up nodal values initially
self.system.update_matrices()
def test_reactions(self):
# Set angular acceleration
w = 5.21 # rad/s
self.hinge.vstrain[0] = w
self.system.update_kinematics() # Update nodal values based on DOFs
self.system.update_matrices()
self.system.solve_reactions() # Solve reactions incl d'Alembert
# Some parameters
L = self.offset
m = self.mass
# Check reactions at beam root
Pg = self.system.joint_reactions["ground"]
P0 = self.system.joint_reactions["node-0"]
Fx_expected = -m * L * w ** 2
assert_aae(P0, [Fx_expected, 0, 0, 0, 0, 0])
assert_aae(Pg, P0)
示例4: hinged_beam_tests
# 需要导入模块: from mbwind import System [as 别名]
# 或者: from mbwind.System import solve_reactions [as 别名]
class hinged_beam_tests(unittest.TestCase):
density = 5.0
length = 20.0
force = 34.2 # N/m
hinge_torque = 0.0
free_beam = False
def setUp(self):
# FE model for beam
x = linspace(0, self.length, 20)
fe = BeamFE(x, density=self.density, EA=0, EIy=1, EIz=0)
fe.set_boundary_conditions('C', 'F')
self.beam = ModalElementFromFE('beam', fe, 0)
# Set loading - in negative Z direction
load = np.zeros((len(x), 3))
load[:, 2] = -self.force
self.beam.loading = load
# Hinge with axis along Y axis
self.hinge = Hinge('hinge', [0, 1, 0])
self.hinge.internal_torque = self.hinge_torque
# Build system
self.system = System()
self.system.add_leaf(self.hinge)
self.hinge.add_leaf(self.beam)
self.system.setup()
if not self.free_beam:
# Prescribe hinge to be fixed
self.system.prescribe(self.hinge)
# Initial calculations
self.recalc()
def recalc(self):
self.system.update_kinematics() # Set up nodal values initially
self.system.update_matrices()
self.system.solve_accelerations() # Calculate accelerations of DOFs
self.system.update_kinematics() # Update nodal values based on DOFs
self.system.update_matrices()
self.system.solve_reactions() # Solve reactions incl d'Alembert
示例5: TestReactionForcesWithRotatedBeam
# 需要导入模块: from mbwind import System [as 别名]
# 或者: from mbwind.System import solve_reactions [as 别名]
class TestReactionForcesWithRotatedBeam(unittest.TestCase):
"""Intended to check the transformation from blade loading to rotor
loading in a wind turbine rotor: the loads are applied to the beam
in the local rotated coordinate system, check they work through to
the ground reactions correctly.
"""
force = 24.1
length = 4.3
root_length = 0.0
def setUp(self):
# FE model for beam - no modes, i.e. rigid
self.x = x = linspace(0, self.length, 20)
fe = BeamFE(x, density=2, EA=0, EIy=0, EIz=0)
# Build the elements
self.shaft = Hinge('shaft', [1, 0, 0])
self.roots = []
self.blades = []
self.pitch_bearings = []
for ib in range(1):
R = rotations(('x', ib*2*pi/3), ('y', -pi/2))
root_offset = dot(R, [self.root_length, 0, 0])
root = RigidConnection('root%d' % (ib+1), root_offset, R)
bearing = Hinge('pitch%d' % (ib+1), [1, 0, 0])
blade = ModalElementFromFE('blade%d' % (ib+1), fe, 0)
self.shaft.add_leaf(root)
root.add_leaf(bearing)
bearing.add_leaf(blade)
self.roots.append(root)
self.blades.append(blade)
self.pitch_bearings.append(bearing)
# Build system
self.system = System()
self.system.add_leaf(self.shaft)
self.system.setup()
self.system.update_kinematics() # Set up nodal values initially
self.system.update_matrices()
def test_reactions(self):
# Some parameters
L = self.length
F = self.length * self.force
# Set loading - in local z direction
load = np.zeros((len(self.x), 3))
load[:, 2] = self.force
self.blades[0].loading = load
self.system.update_kinematics()
self.system.update_matrices()
self.system.solve_reactions()
# Check reactions at ground (0, 0, 0)
P = -self.system.joint_reactions['ground']
F_expected = [-F, 0, 0]
M_expected = [0, -F*(L+self.root_length)/2, 0]
assert_aae(P, np.r_[F_expected, M_expected])
# Reactions on other side of hinge
P2 = -self.system.joint_reactions['node-0']
assert_aae(P, P2)
# Now set pitch angle to 45deg
# NB: hinge rotation is opposite to wind turbine pitch convention
self.pitch_bearings[0].xstrain[0] = -pi / 4
self.system.update_kinematics()
self.system.update_matrices()
self.system.solve_reactions()
# Check reactions at ground (0, 0, 0)
P = -self.system.joint_reactions['ground']
F_expected = [-F/sqrt(2), F/sqrt(2), 0]
M_expected = [-F/sqrt(2)*L/2, -F/sqrt(2)*L/2, 0]
assert_aae(P, np.r_[F_expected, M_expected])
# Reactions on other side of hinge
P2 = -self.system.joint_reactions['node-0']
assert_aae(P, P2)
示例6: TestReactionForcesOnModalElementFromFE
# 需要导入模块: from mbwind import System [as 别名]
# 或者: from mbwind.System import solve_reactions [as 别名]
class TestReactionForcesOnModalElementFromFE(unittest.TestCase):
"""
System
------
A triangular rigid beam, offset by a rigid link from a hinge.
Tests
-----
Set the angular acceleration of the hinge. Check the reaction
forces at the centre and at the root of the beam.
"""
mass = 5.0 # kg
length = 20.0 # m
offset = 3.2 # m
force = -34.2 # N / m
def setUp(self):
# FE model for beam - no modes, i.e. rigid
x = linspace(0, self.length, 20)
density = (2 * self.mass / self.length) * (1 - x / self.length)
fe = BeamFE(x, density=density, EA=0, EIy=1, EIz=0)
fe.set_boundary_conditions('C', 'F')
self.beam = ModalElementFromFE('beam', fe, 0)
# Set loading - in Z direction
load = np.zeros((len(x), 3))
load[:, 2] = self.force
self.beam.loading = load
# Offset from hinge axis
self.conn = RigidConnection('offset', [self.offset, 0, 0])
# Hinge with axis along Y axis
self.hinge = Hinge('hinge', [0, 1, 0])
# Build system
self.system = System()
self.system.add_leaf(self.hinge)
self.hinge.add_leaf(self.conn)
self.conn.add_leaf(self.beam)
self.system.setup()
self.system.update_kinematics() # Set up nodal values initially
def test_reactions(self):
# Set angular acceleration
alpha = 1.235 # rad/s2
self.hinge.astrain[0] = alpha
self.system.update_kinematics() # Update nodal values based on DOFs
self.system.solve_reactions() # Solve reactions incl d'Alembert
# Some parameters
L = self.length
m = self.mass
Ro = self.offset
Rg = L / 3 # distance to CoM along beam
IG = m * L ** 2 / 18
assert_aae(m, self.beam.mass_vv[0, 0])
# Check reactions at beam root
P = self.system.joint_reactions['node-1']
Fz_expected = (-m * (Ro + Rg) * alpha -
self.force * L)
My_expected = ((IG + m * Rg * (Ro + Rg)) * alpha +
self.force * L ** 2 / 2)
assert_aae(P, [0, 0, Fz_expected, 0, My_expected, 0])