本文整理汇总了Python中matplotlib.figure.Figure.tight_layout方法的典型用法代码示例。如果您正苦于以下问题:Python Figure.tight_layout方法的具体用法?Python Figure.tight_layout怎么用?Python Figure.tight_layout使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.figure.Figure
的用法示例。
在下文中一共展示了Figure.tight_layout方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: bargraph
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
def bargraph(request):
p = request.GET
try:
d = [(float(p['d10']), float(p['d11']), float(p['d12']), float(p['d13']), float(p['d14'])),
(float(p['d20']), float(p['d21']), float(p['d22']), float(p['d23']), float(p['d24'])),
(float(p['d30']), float(p['d31']), float(p['d32']), float(p['d33']), float(p['d34'])),
(float(p['d40']), float(p['d41']), float(p['d42']), float(p['d43']), float(p['d44'])),
(float(p['d50']), float(p['d51']), float(p['d52']), float(p['d53']), float(p['d54'])),
(float(p['d60']), float(p['d61']), float(p['d62']), float(p['d63']), float(p['d64'])),
(float(p['d70']), float(p['d71']), float(p['d72']), float(p['d73']), float(p['d74'])),
(float(p['d80']), float(p['d81']), float(p['d82']), float(p['d83']), float(p['d84']))]
except:
return render(request,"bad.html", { 'type':'bargraph' })
tickM = ["2. Culture for retreatment",
"3. GeneXpert for HIV positive only",
"4. GeneXpert for smear positive only",
"5. GeneXpert for all",
"6. GeneXpert for all, culture confirmed",
"7. MODS/TLA",
"8. Same-day smear microscopy",
"9. Same-day GeneXpert"]
colors = ["grey","blue","green","yellow","red"]
ndata = zip(*d)
loc = np.arange(len(ndata[0]))
width = 0.15
fig = Figure(facecolor='white')
canvas = FigureCanvas(fig)
ax = fig.add_subplot(111)
rect = [ax.bar(loc+width*i, ndata[i], width, color=colors[i])
for i in range(len(ndata))]
ax.set_ylim(-50,100)
ax.set_xlim(-width*4, len(loc) +(4*width))
ax.set_xticks(loc + (2.5*width))
ax.set_xticklabels(tickM, rotation='30', size='small', stretch='condensed',
ha='right' )
ax.legend ((rect[0][0], rect[1][0], rect[2][0], rect[3][0], rect[4][0]),
("TBInc", "MDRInc", "TBMort", "Yr1Cost", "Yr5Cost"),loc='best')
ax.set_title ("Graph Comparison")
ax.axhline(color='black')
ax.set_ylabel('percentage change from baseline')
fig.tight_layout()
response=HttpResponse(content_type='image/png')
canvas.print_png(response,facecolor=fig.get_facecolor())
return response
示例2: make_1d_overlay
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
def make_1d_overlay(in_file_name, out_dir, ext, subset, b_effs=[0.1, 0.2]):
textsize = _text_size - 2
b_eff_styles = _b_eff_styles
taggers = {x:{} for x in b_effs}
with h5py.File(in_file_name, 'r') as in_file:
for b_eff in taggers:
for tag in (subset or _default_overlay_1d):
taggers[b_eff][tag] = get_c_vs_u_const_beff(
in_file, tag, b_eff=b_eff)
fig = Figure(figsize=_fig_size)
canvas = FigureCanvas(fig)
ax = fig.add_subplot(1,1,1)
for b_eff, linestyle in zip(b_effs, b_eff_styles):
for tname, (vc, vu) in taggers[b_eff].items():
label, color = leg_labels_colors.get(tname, (tname, 'k'))
lab = '$1 / \epsilon_{{ b }} = $ {rej:.0f}, {tname}'.format(
rej=1/b_eff, tname=label)
ax.plot(vc, vu, label=lab, color=color, linewidth=_line_width,
linestyle=linestyle)
ax.set_xlim(0.1, 0.5)
legprops = {'size':textsize}
leg = ax.legend(prop=legprops)
leg.get_title().set_fontsize(textsize)
setup_1d_ctag_legs(ax, textsize)
fig.tight_layout(pad=0, h_pad=0, w_pad=0)
if not isdir(out_dir):
os.mkdir(out_dir)
file_name = '{}/ctag-1d-brej-overlay{}'.format(
out_dir, ext)
canvas.print_figure(file_name, bbox_inches='tight')
示例3: plotThreeWay
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
def plotThreeWay(hist, title, filename=None, x_axis_title=None, minimum=None, maximum=None, bins=101): # the famous 3 way plot (enhanced)
if minimum is None:
minimum = 0
elif minimum == 'minimum':
minimum = np.ma.min(hist)
if maximum == 'median' or maximum is None:
median = np.ma.median(hist)
maximum = median * 2 # round_to_multiple(median * 2, math.floor(math.log10(median * 2)))
elif maximum == 'maximum':
maximum = np.ma.max(hist)
maximum = maximum # round_to_multiple(maximum, math.floor(math.log10(maximum)))
if maximum < 1 or hist.all() is np.ma.masked:
maximum = 1
x_axis_title = '' if x_axis_title is None else x_axis_title
fig = Figure()
FigureCanvas(fig)
fig.patch.set_facecolor('white')
ax1 = fig.add_subplot(311)
create_2d_pixel_hist(fig, ax1, hist, title=title, x_axis_title="column", y_axis_title="row", z_min=minimum if minimum else 0, z_max=maximum)
ax2 = fig.add_subplot(312)
create_1d_hist(fig, ax2, hist, bins=bins, x_axis_title=x_axis_title, y_axis_title="#", x_min=minimum, x_max=maximum)
ax3 = fig.add_subplot(313)
create_pixel_scatter_plot(fig, ax3, hist, x_axis_title="channel=row + column*336", y_axis_title=x_axis_title, y_min=minimum, y_max=maximum)
fig.tight_layout()
if not filename:
fig.show()
elif isinstance(filename, PdfPages):
filename.savefig(fig)
else:
fig.savefig(filename)
示例4: __init__
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
def __init__(self, histogramNumbers, histogramBins, title='', xlabel='', ylabel=''):
self.histNum = histogramNumbers
self.histBins = histogramBins
self.text_title = title
self.text_xlabel = xlabel
self.text_ylabel = ylabel
# init figure
fig = Figure(figsize=(5, 2.5))
self.axes = fig.add_subplot(111)
# We want the axes cleared every time plot() is called
self.axes.hold(False)
# plot data
self.compute_initial_figure()
# init canvas (figure -> canvas)
FigureCanvas.__init__(self, fig)
#self.setParent(parent)
# setup
fig.tight_layout()
FigureCanvas.setSizePolicy(self,
QSizePolicy.Expanding,
QSizePolicy.Expanding)
FigureCanvas.updateGeometry(self)
示例5: PlotOverview
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
class PlotOverview(qtgui.QWidget):
def __init__(self, db):
self.db = db
self.fig = Figure()
self.canvas = FigureCanvas(self.fig)
super().__init__()
lay_v = qtgui.QVBoxLayout()
self.setLayout(lay_v)
self.year = qtgui.QComboBox()
self.year.currentIndexChanged.connect(self.plot)
lay_h = qtgui.QHBoxLayout()
lay_h.addWidget(self.year)
lay_h.addStretch(1)
lay_v.addLayout(lay_h)
lay_v.addWidget(self.canvas)
self.update()
def update(self):
constraints = self.db.get_constraints()
current_year = self.year.currentText()
self.year.clear()
years = [y for y in range(min(constraints['start_date']).year, datetime.datetime.now().year + 1)]
self.year.addItems([str(y) for y in years])
try:
self.year.setCurrentIndex(years.index(current_year))
except ValueError:
self.year.setCurrentIndex(len(years) - 1)
def plot(self):
self.fig.clf()
ax = self.fig.add_subplot(111)
worked = np.zeros((12, 34)) + np.nan
year = int(self.year.currentText())
for month in range(12):
for day in range(calendar.monthrange(year, month + 1)[1]):
date = datetime.date(year, month + 1, day + 1)
if date < datetime.datetime.now().date():
t = self.db.get_worktime(date).total_seconds() / 60.0 - self.db.get_desiredtime(date)
worked[month, day] = t
ax.text(day, month, re.sub('0(?=[.])', '', ('{:.1f}'.format(t / 60))), ha='center', va='center')
worked[:, 32:] = np.nansum(worked[:, :31], axis=1, keepdims=True)
for month in range(12):
ax.text(32.5, month, re.sub('0(?=[.])', '', ('{:.1f}'.format(worked[month, -1] / 60))), ha='center', va='center')
ax.imshow(worked, vmin=-12*60, vmax=12*60, interpolation='none', cmap='coolwarm')
ax.set_xticks(np.arange(31))
ax.set_yticks(np.arange(12))
ax.set_xticklabels(1 + np.arange(31))
ax.set_yticklabels(calendar.month_name[1:])
self.fig.tight_layout()
self.canvas.draw()
示例6: MplAxes
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
class MplAxes(object):
def __init__(self, parent):
self._parent = parent
self._parent.resizeEvent = self.resize_graph
self.create_axes()
self.redraw_figure()
def create_axes(self):
self.figure = Figure(None, dpi=100)
self.canvas = FigureCanvas(self.figure)
self.canvas.setParent(self._parent)
axes_layout = QtGui.QVBoxLayout(self._parent)
axes_layout.setContentsMargins(0, 0, 0, 0)
axes_layout.setSpacing(0)
axes_layout.setMargin(0)
axes_layout.addWidget(self.canvas)
self.canvas.setSizePolicy(QtGui.QSizePolicy.Expanding,
QtGui.QSizePolicy.Expanding)
self.canvas.updateGeometry()
self.axes = self.figure.add_subplot(111)
def resize_graph(self, event):
new_size = event.size()
self.figure.set_size_inches([new_size.width() / 100.0, new_size.height() / 100.0])
self.redraw_figure()
def redraw_figure(self):
self.figure.tight_layout(None, 0.8, None, None)
self.canvas.draw()
示例7: make_Histogram
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
def make_Histogram(self):
self.read_table()
functions.process(self.dispData, self.dicData)
self.make_CorrFigs()
self.make_TMSFig()
on = self.dicData['hdf5_on'] # this one contains all the histogram axis
res = self.dicData['res'] # this contains the calculation results
fig1 = Figure(facecolor='white', edgecolor='white')
ax1 = fig1.add_subplot(2, 2, 1)
ax2 = fig1.add_subplot(2, 2, 2)
ax3 = fig1.add_subplot(2, 2, 3)
ax4 = fig1.add_subplot(2, 2, 4)
ax1.imshow(res.IQmapM_avg[0], interpolation='nearest', origin='low',
extent=[on.xII[0], on.xII[-1], on.yII[0], on.yII[-1]], aspect='auto')
ax2.imshow(res.IQmapM_avg[1], interpolation='nearest', origin='low',
extent=[on.xQQ[0], on.xQQ[-1], on.yQQ[0], on.yQQ[-1]], aspect='auto')
ax3.imshow(res.IQmapM_avg[2], interpolation='nearest', origin='low',
extent=[on.xIQ[0], on.xIQ[-1], on.yIQ[0], on.yIQ[-1]], aspect='auto')
ax4.imshow(res.IQmapM_avg[3], interpolation='nearest', origin='low',
extent=[on.xQI[0], on.xQI[-1], on.yQI[0], on.yQI[-1]], aspect='auto')
fig1.tight_layout()
ax1.set_title('IIc')
ax2.set_title('QQc')
ax3.set_title('IQc')
ax4.set_title('QIc')
self.update_page_1(fig1) # send figure to the show_figure terminal
self.read_table()
示例8: draw
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
def draw(self, isotherms=True, isochores=True, isentrops=True, qIsolines=True, fig = None):
if (fig is None):
fig = Figure(figsize=(16.0, 10.0), facecolor='white')
self.fig = fig
self.ax = self.fig.add_subplot(1,1,1)
self.ax.set_xlabel('Enthalpy [kJ/kg]')
self.ax.set_ylabel('Pressure [bar]')
self.ax.set_title(self.fluidName, y=1.04)
self.ax.grid(True, which = 'both')
x_in, y_in = self.fig.get_size_inches()
dpi = self.fig.get_dpi()
self.x_pts = x_in * dpi
self.y_pts = y_in * dpi
self.ax.set_xlim(self.hMin / 1e3, self.hMax / 1e3)
self.ax.set_ylim(self.pMin / 1e5, self.pMax / 1e5)
if qIsolines:
self.plotDome()
if isochores:
self.plotIsochores()
if isotherms:
self.plotIsotherms()
if isentrops:
self.plotIsentrops()
self.ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.05), fontsize="small", ncol=4)
fig.tight_layout()
return fig
示例9: plot_alpha_parameters
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
def plot_alpha_parameters(pdict, outinfo):
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigCanvas
pars = []
parlist, div_idxs = _sort_alpha(pdict)
# in some fits we don't include systematics, don't draw anything
if not parlist:
return
xlab, xpos, ypos, yerr = _get_lab_x_y_err(parlist)
fig = Figure(figsize=(8, 4))
fig.subplots_adjust(bottom=0.2)
canvas = FigCanvas(fig)
ax = fig.add_subplot(1,1,1)
ax.set_xlim(0, len(xlab))
ax.set_ylim(-2.5, 2.5)
ax.errorbar(
xpos, ypos, yerr=yerr, **_eb_style)
ax.axhline(0, **_hline_style)
for hline in div_idxs:
ax.axvline(hline, **_hline_style)
ax.set_xticks(xpos)
ax.set_xticklabels(xlab)
ax.tick_params(labelsize=_txt_size)
for lab in ax.get_xticklabels():
lab.set_rotation(60 if len(xlab) < 10 else 90)
outdir = outinfo['outdir']
fig.tight_layout(pad=0.3, h_pad=0.3, w_pad=0.3)
canvas.print_figure(
join(outdir, 'alpha' + outinfo['ext']), bboxinches='tight')
示例10: draw_timeline
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
def draw_timeline(self):
fig = Figure(figsize=(7, 3))
canvas = FigureCanvas(fig)
ax = fig.add_subplot(111, axisbg="white")
xseries = range(len(TRADING_MINUTES))
pct = lambda x, _: "{0:1.1f}%".format(100*x)
xseries_show = xseries[::30]
xlabels_show = TRADING_MINUTES[::30]
ax.clear()
ax.plot(xseries, self._portfolio_timeline, label="portfolio", linewidth=1.0, color="r")
ax.plot(xseries, self._benchmark_timeline, label="benchmark", linewidth=1.0, color="b")
ax.yaxis.set_major_formatter(FuncFormatter(pct))
for item in ax.get_yticklabels():
item.set_size(10)
ax.set_xlim(0, 240)
ax.set_xticks(xseries_show)
ax.set_xticklabels(xlabels_show, fontsize=10)
ax.grid(True)
ax.legend(loc=2, prop={"size": 9})
fig.tight_layout()
fig.savefig(SNAPSHOT_IMG_FILE)
logger.info("Snapshot image saved at ./static/temp/snapshot.jpg.")
示例11: confusion_matrix_
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
def confusion_matrix_(y_test,
y_pred,
target_names,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
cm = confusion_matrix(y_test, y_pred)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
np.set_printoptions(precision=2)
fig = Figure()
canvas = FigureCanvas(fig)
ax = fig.add_subplot(111)
im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
fig.colorbar(im)
tick_marks = np.arange(len(target_names))
ax.set_xticks(tick_marks)
ax.set_xticklabels(target_names, rotation=45)
ax.set_yticks(tick_marks)
ax.set_yticklabels(target_names)
fig.tight_layout()
ax.set_title(title)
ax.set_ylabel('True label')
ax.set_xlabel('Predicted label')
return fig
示例12: end
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
def end(self):
num_frames = len(self.results)
xmax, ymax = self._get_lims()
prev = None
for i in range(10000):
try:
os.remove('%s%04d.png' % (self.pref, i + 1))
except:
break # No more
for i in range(num_frames):
fig = Figure(figsize=(16, 9))
canvas = FigureCanvasAgg(fig)
ax = fig.add_subplot(111, xlim=(-xmax, xmax), ylim=(-ymax, ymax))
prev = _plot_2d(ax, self.results[i], prev)
ax.text(0, -ymax, 'Generation: %03d' % (i * self.step),
ha='left', va='bottom', fontsize=16)
fig.tight_layout()
canvas.print_figure('%s%04d.png' % (self.pref, i + 1))
try:
os.remove('%s.mp4' % self.pref)
except FileNotFoundError:
pass # OK, does not exist
os.system('avconv -r 1 -f image2 -i %s%%04d.png %s.mp4 -vcodec libx264'
% (self.pref, self.pref))
for i in range(num_frames):
os.remove('%s%04d.png' % (self.pref, i + 1))
return '%s.mp4' % self.pref
示例13: __init__
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
def __init__(self, parent, red_farred):
super(GraphPanel, self).__init__(parent, -1)
self.SetBackgroundColour((218,238,255))
self.SetWindowStyle(wx.RAISED_BORDER)
figure = Figure()
figure.set_facecolor(color='#daeeff')
sizer = wx.BoxSizer(wx.VERTICAL)
self.axes = figure.add_subplot(111)
self.x_data = range(340, 821)
self.axes.plot(self.x_data, [0] * 481, label='Scan 0')
self.axes.legend(loc=1)
self.canvas = FigureCanvasWxAgg(self, -1, figure)
figure.tight_layout(pad=2.0)
sizer.Add(self.canvas, 1, wx.EXPAND | wx.ALL)
sizer.AddSpacer(20)
add_toolbar(sizer, self.canvas)
self.SetSizer(sizer)
self.canvas.draw()
cid1 = self.canvas.mpl_connect('motion_notify_event', self.on_movement)
cid2 = self.canvas.mpl_connect('button_press_event', self.on_press)
cid3 = self.canvas.mpl_connect('scroll_event', self.on_scroll)
self.integ_lines = []
self.fractional_lines = []
self.plot_unit = -1
self.plot_mode = -1
self.text = None
self.x_label = X_LABEL
self.red_farred = red_farred
示例14: DevPlot
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
class DevPlot(Plot):
def __init__(self,k1={'intel_snb' : ['intel_snb','intel_snb','intel_snb']},k2={'intel_snb':['LOAD_1D_ALL','INSTRUCTIONS_RETIRED','LOAD_OPS_ALL']},processes=1,**kwargs):
self.k1 = k1
self.k2 = k2
super(DevPlot,self).__init__(processes=processes,**kwargs)
def plot(self,jobid,job_data=None):
self.setup(jobid,job_data=job_data)
cpu_name = self.ts.pmc_type
type_name=self.k1[cpu_name][0]
events = self.k2[cpu_name]
ts=self.ts
n_events = len(events)
self.fig = Figure(figsize=(8,n_events*2+3),dpi=110)
do_rate = True
scale = 1.0
if type_name == 'mem':
do_rate = False
scale=2.0**10
if type_name == 'cpu':
scale=ts.wayness*100.0
for i in range(n_events):
self.ax = self.fig.add_subplot(n_events,1,i+1)
self.plot_lines(self.ax, [i], xscale=3600., yscale=scale, do_rate = do_rate)
self.ax.set_ylabel(events[i],size='small')
self.ax.set_xlabel("Time (hr)")
self.fig.subplots_adjust(hspace=0.5)
self.fig.tight_layout()
self.output('devices')
示例15: make_1d_plots
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import tight_layout [as 别名]
def make_1d_plots(in_file_name, out_dir, ext, b_eff=0.1, reject='U'):
textsize=_text_size
taggers = {}
with h5py.File(in_file_name, 'r') as in_file:
for tag in ['gaia', mv1uc_name, 'jfc', 'jfit']:
taggers[tag] = get_c_vs_u_const_beff(
in_file, tag, b_eff=b_eff, reject=reject)
fig = Figure(figsize=_fig_size)
canvas = FigureCanvas(fig)
ax = fig.add_subplot(1,1,1)
for tname, (vc, vu) in taggers.items():
label, color = leg_labels_colors.get(tname, (tname, 'k'))
ax.plot(vc, vu, label=label, color=color, linewidth=_line_width)
leg = ax.legend(title='$b$-rejection = {}'.format(1/b_eff),
prop={'size':textsize})
leg.get_title().set_fontsize(textsize)
setup_1d_ctag_legs(ax, textsize, reject=reject)
fig.tight_layout(pad=0, h_pad=0, w_pad=0)
if not isdir(out_dir):
os.mkdir(out_dir)
file_name = '{}/{rej}Rej-vs-cEff-brej{}{}'.format(
out_dir, int(1.0/b_eff), ext, rej=reject.lower())
canvas.print_figure(file_name, bbox_inches='tight')