本文整理汇总了Python中matplotlib.figure.Figure.savefig方法的典型用法代码示例。如果您正苦于以下问题:Python Figure.savefig方法的具体用法?Python Figure.savefig怎么用?Python Figure.savefig使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.figure.Figure
的用法示例。
在下文中一共展示了Figure.savefig方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_tdc_event
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def plot_tdc_event(points, filename=None):
fig = Figure()
FigureCanvas(fig)
ax = fig.add_subplot(111, projection='3d')
xs = points[:, 0]
ys = points[:, 1]
zs = points[:, 2]
cs = points[:, 3]
p = ax.scatter(xs, ys, zs, c=cs, s=points[:, 3] ** (2) / 5., marker='o')
ax.set_xlabel('x [250 um]')
ax.set_ylabel('y [50 um]')
ax.set_zlabel('t [25 ns]')
ax.title('Track of one TPC event')
ax.set_xlim(0, 80)
ax.set_ylim(0, 336)
c_bar = fig.colorbar(p)
c_bar.set_label('charge [TOT]')
if not filename:
fig.show()
elif isinstance(filename, PdfPages):
filename.savefig(fig)
elif filename:
fig.savefig(filename)
return fig
示例2: test_repeated_save_with_alpha
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def test_repeated_save_with_alpha():
# We want an image which has a background color of bluish green, with an
# alpha of 0.25.
fig = Figure([1, 0.4])
fig.set_facecolor((0, 1, 0.4))
fig.patch.set_alpha(0.25)
# The target color is fig.patch.get_facecolor()
buf = io.BytesIO()
fig.savefig(buf,
facecolor=fig.get_facecolor(),
edgecolor='none')
# Save the figure again to check that the
# colors don't bleed from the previous renderer.
buf.seek(0)
fig.savefig(buf,
facecolor=fig.get_facecolor(),
edgecolor='none')
# Check the first pixel has the desired color & alpha
# (approx: 0, 1.0, 0.4, 0.25)
buf.seek(0)
assert_array_almost_equal(tuple(imread(buf)[0, 0]),
(0.0, 1.0, 0.4, 0.250),
decimal=3)
示例3: tBidBax_kd
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def tBidBax_kd(mcmc_set):
""" .. todo:: document the basis for this"""
num_kds = 10000
# Get indices for the tBid/Bax binding constants
estimate_params = mcmc = mcmc_set.chains[0].options.estimate_params
tBid_iBax_kf_index = None
tBid_iBax_kr_index = None
for i, p in enumerate(estimate_params):
if p.name == 'tBid_iBax_kf':
tBid_iBax_kf_index = i
elif p.name == 'tBid_iBax_kr':
tBid_iBax_kr_index = i
# If we couldn't find the parameters, return None for the result
if tBid_iBax_kf_index is None or tBid_iBax_kr_index is None:
return Result(None, None)
# Sample the kr/kf ratio across the pooled chains
kd_dist = np.zeros(num_kds)
for i in range(num_kds):
position = mcmc_set.get_sample_position()
kd_dist[i] = ((10 ** position[tBid_iBax_kr_index]) /
(10 ** position[tBid_iBax_kf_index]))
# Calculate the mean and variance
mean = kd_dist.mean()
sd = kd_dist.std()
# Plot the Kd distribution
plot_filename = '%s_tBidiBax_kd_dist.png' % mcmc_set.name
fig = Figure()
ax = fig.gca()
ax.hist(kd_dist)
canvas = FigureCanvasAgg(fig)
fig.set_canvas(canvas)
fig.savefig(plot_filename)
return MeanSdResult(mean, sd, plot_filename)
示例4: write_figures
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def write_figures(prefix, directory, dose_name, dose_data, data, ec50_coeffs, feature_set, log_transform):
"""Write out figure scripts for each measurement
prefix - prefix for file names
directory - write files into this directory
dose_name - name of the dose measurement
dose_data - doses per image
data - data per image
ec50_coeffs - coefficients calculated by calculate_ec50
feature_set - tuples of object name and feature name in same order as data
log_transform - true to log-transform the dose data
"""
from matplotlib.figure import Figure
from matplotlib.backends.backend_pdf import FigureCanvasPdf
if log_transform:
dose_data = np.log(dose_data)
for i, (object_name, feature_name) in enumerate(feature_set):
fdata = data[:, i]
fcoeffs = ec50_coeffs[i, :]
filename = "%s%s_%s.pdf" % (prefix, object_name, feature_name)
pathname = os.path.join(directory, filename)
f = Figure()
canvas = FigureCanvasPdf(f)
ax = f.add_subplot(1, 1, 1)
x = np.linspace(0, np.max(dose_data), num=100)
y = sigmoid(fcoeffs, x)
ax.plot(x, y)
dose_y = sigmoid(fcoeffs, dose_data)
ax.plot(dose_data, dose_y, "o")
ax.set_xlabel("Dose")
ax.set_ylabel("Response")
ax.set_title("%s_%s" % (object_name, feature_name))
f.savefig(pathname)
示例5: acf_of_ml_residuals
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def acf_of_ml_residuals(mcmc_set):
# Get the maximum likelihood parameters
try:
(max_likelihood, max_likelihood_position) = mcmc_set.maximum_likelihood()
except NoPositionsException as npe:
return Result(None, None)
# Get the residuals
residuals = mcmc_set.chains[0].get_residuals(max_likelihood_position)
# Plot the autocorrelation function
acf = np.correlate(residuals[1], residuals[1], mode='full')
plot_filename = '%s_acf_of_ml_residuals.png' % mcmc_set.name
thumbnail_filename = '%s_acf_of_ml_residuals_th.png' % mcmc_set.name
fig = Figure()
ax = fig.gca()
ax.plot(acf)
ax.set_title('Autocorrelation of Maximum Likelihood Residuals')
canvas = FigureCanvasAgg(fig)
fig.set_canvas(canvas)
fig.savefig(plot_filename)
fig.savefig(thumbnail_filename, dpi=10)
return ThumbnailResult(thumbnail_filename, plot_filename)
示例6: save_as_plt
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def save_as_plt(self, fname, pixel_array=None, vmin=None, vmax=None,
cmap=None, format=None, origin=None):
""" This method saves the image from a numpy array using matplotlib
:param fname: Location and name of the image file to be saved.
:param pixel_array: Numpy pixel array, i.e. ``numpy()`` return value
:param vmin: matplotlib vmin
:param vmax: matplotlib vmax
:param cmap: matplotlib color map
:param format: matplotlib format
:param origin: matplotlib origin
This method will return True if successful
"""
from matplotlib.backends.backend_agg \
import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from pylab import cm
if pixel_array is None:
pixel_array = self.numpy()
if cmap is None:
cmap = cm.bone
fig = Figure(figsize=pixel_array.shape[::-1], dpi=1, frameon=False)
canvas = FigureCanvas(fig)
fig.figimage(pixel_array, cmap=cmap, vmin=vmin,
vmax=vmax, origin=origin)
fig.savefig(fname, dpi=1, format=format)
return True
示例7: barChart
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def barChart(size, data, output):
d = data['x']
ind = np.arange(len(d))
ys = data['y']
width = 0.60
fig = Figure(figsize=(size[0], size[1]), dpi=size[2])
FigureCanvas(fig) # Stores canvas on fig.canvas
axis = fig.add_subplot(111)
axis.grid(color='r', linestyle='dotted', linewidth=0.1, alpha=0.5)
bottom = np.zeros(len(ys[0]['data']))
for y in ys:
axis.bar(ind, y['data'], width, bottom=bottom, label=y.get('label'))
bottom += np.array(y['data'])
axis.set_title(data.get('title', ''))
axis.set_xlabel(data['xlabel'])
axis.set_ylabel(data['ylabel'])
if data.get('allTicks', True) is True:
axis.set_xticks(ind)
if 'xtickFnc' in data:
axis.set_xticklabels([data['xtickFnc'](v) for v in axis.get_xticks()])
axis.legend()
fig.savefig(output, format='png', transparent=True)
示例8: plotThreeWay
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def plotThreeWay(hist, title, filename=None, x_axis_title=None, minimum=None, maximum=None, bins=101): # the famous 3 way plot (enhanced)
if minimum is None:
minimum = 0
elif minimum == 'minimum':
minimum = np.ma.min(hist)
if maximum == 'median' or maximum is None:
median = np.ma.median(hist)
maximum = median * 2 # round_to_multiple(median * 2, math.floor(math.log10(median * 2)))
elif maximum == 'maximum':
maximum = np.ma.max(hist)
maximum = maximum # round_to_multiple(maximum, math.floor(math.log10(maximum)))
if maximum < 1 or hist.all() is np.ma.masked:
maximum = 1
x_axis_title = '' if x_axis_title is None else x_axis_title
fig = Figure()
FigureCanvas(fig)
fig.patch.set_facecolor('white')
ax1 = fig.add_subplot(311)
create_2d_pixel_hist(fig, ax1, hist, title=title, x_axis_title="column", y_axis_title="row", z_min=minimum if minimum else 0, z_max=maximum)
ax2 = fig.add_subplot(312)
create_1d_hist(fig, ax2, hist, bins=bins, x_axis_title=x_axis_title, y_axis_title="#", x_min=minimum, x_max=maximum)
ax3 = fig.add_subplot(313)
create_pixel_scatter_plot(fig, ax3, hist, x_axis_title="channel=row + column*336", y_axis_title=x_axis_title, y_min=minimum, y_max=maximum)
fig.tight_layout()
if not filename:
fig.show()
elif isinstance(filename, PdfPages):
filename.savefig(fig)
else:
fig.savefig(filename)
示例9: plot_correlations
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def plot_correlations(filenames, limit=None):
DataFrame = pd.DataFrame()
index = 0
for fileName in filenames:
with pd.get_store(fileName, 'r') as store:
tempDataFrame = pd.DataFrame({'Event': store.Hits.Event[:15000], 'Row' + str(index): store.Hits.Row[:15000]})
tempDataFrame = tempDataFrame.set_index('Event')
DataFrame = tempDataFrame.join(DataFrame)
DataFrame = DataFrame.dropna()
index += 1
del tempDataFrame
DataFrame["index"] = DataFrame.index
DataFrame.drop_duplicates(take_last=True, inplace=True)
del DataFrame["index"]
correlationNames = ('Row')
index = 0
for corName in correlationNames:
for colName in itertools.permutations(DataFrame.filter(regex=corName), 2):
if(corName == 'Col'):
heatmap, xedges, yedges = np.histogram2d(DataFrame[colName[0]], DataFrame[colName[1]], bins=(80, 80), range=[[1, 80], [1, 80]])
else:
heatmap, xedges, yedges = np.histogram2d(DataFrame[colName[0]], DataFrame[colName[1]], bins=(336, 336), range=[[1, 336], [1, 336]])
extent = [yedges[0] - 0.5, yedges[-1] + 0.5, xedges[-1] + 0.5, xedges[0] - 0.5]
cmap = cm.get_cmap('hot', 40)
fig = Figure()
FigureCanvas(fig)
ax = fig.add_subplot(111)
ax.imshow(heatmap, extent=extent, cmap=cmap, interpolation='nearest')
ax.invert_yaxis()
ax.set_xlabel(colName[0])
ax.set_ylabel(colName[1])
ax.set_title('Correlation plot(' + corName + ')')
fig.savefig(colName[0] + '_' + colName[1] + '.pdf')
index += 1
示例10: plot_cluster_tot_size
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def plot_cluster_tot_size(hist, median=False, z_max=None, filename=None):
H = hist[0:50, 0:20]
if z_max is None:
z_max = np.ma.max(H)
if z_max < 1 or H.all() is np.ma.masked:
z_max = 1
fig = Figure()
FigureCanvas(fig)
ax = fig.add_subplot(111)
extent = [-0.5, 20.5, 49.5, -0.5]
bounds = np.linspace(start=0, stop=z_max, num=255, endpoint=True)
cmap = cm.get_cmap('jet')
cmap.set_bad('w')
norm = colors.BoundaryNorm(bounds, cmap.N)
im = ax.imshow(H, aspect="auto", interpolation='nearest', cmap=cmap, norm=norm, extent=extent) # for monitoring
ax.set_title('Cluster size and cluster ToT (' + str(np.sum(H) / 2) + ' entries)')
ax.set_xlabel('cluster size')
ax.set_ylabel('cluster ToT')
ax.invert_yaxis()
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)
cb = fig.colorbar(im, cax=cax, ticks=np.linspace(start=0, stop=z_max, num=9, endpoint=True))
cb.set_label("#")
fig.patch.set_facecolor('white')
if not filename:
fig.show()
elif isinstance(filename, PdfPages):
filename.savefig(fig)
else:
fig.savefig(filename)
示例11: plot_1d_hist
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def plot_1d_hist(hist, yerr=None, title=None, x_axis_title=None, y_axis_title=None, x_ticks=None, color='r', plot_range=None, log_y=False, filename=None, figure_name=None):
logging.info('Plot 1d histogram%s', (': ' + title) if title is not None else '')
fig = Figure()
FigureCanvas(fig)
ax = fig.add_subplot(111)
if plot_range is None:
plot_range = range(0, len(hist))
if not plot_range:
plot_range = [0]
if yerr is not None:
ax.bar(left=plot_range, height=hist[plot_range], color=color, align='center', yerr=yerr)
else:
ax.bar(left=plot_range, height=hist[plot_range], color=color, align='center')
ax.set_xlim((min(plot_range) - 0.5, max(plot_range) + 0.5))
ax.set_title(title)
if x_axis_title is not None:
ax.set_xlabel(x_axis_title)
if y_axis_title is not None:
ax.set_ylabel(y_axis_title)
if x_ticks is not None:
ax.set_xticks(range(0, len(hist[:])) if plot_range is None else plot_range)
ax.set_xticklabels(x_ticks)
ax.tick_params(which='both', labelsize=8)
if np.allclose(hist, 0.0):
ax.set_ylim((0, 1))
else:
if log_y:
ax.set_yscale('log')
ax.grid(True)
if not filename:
fig.show()
elif isinstance(filename, PdfPages):
filename.savefig(fig)
else:
fig.savefig(filename)
示例12: plot_scatter_time
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def plot_scatter_time(x, y, yerr=None, title=None, legend=None, plot_range=None, plot_range_y=None, x_label=None, y_label=None, marker_style='-o', log_x=False, log_y=False, filename=None):
logging.info("Plot time scatter plot %s", (': ' + title) if title is not None else '')
fig = Figure()
FigureCanvas(fig)
ax = fig.add_subplot(111)
ax.format_xdata = mdates.DateFormatter('%Y-%m-%d')
times = []
for time in x:
times.append(datetime.fromtimestamp(time))
if yerr is not None:
ax.errorbar(times, y, yerr=[yerr, yerr], fmt=marker_style)
else:
ax.plot(times, y, marker_style)
ax.set_title(title)
if x_label is not None:
ax.set_xlabel(x_label)
if y_label is not None:
ax.set_ylabel(y_label)
if log_x:
ax.xscale('log')
if log_y:
ax.yscale('log')
if plot_range:
ax.set_xlim((min(plot_range), max(plot_range)))
if plot_range_y:
ax.set_ylim((min(plot_range_y), max(plot_range_y)))
if legend:
ax.legend(legend, 0)
ax.grid(True)
if not filename:
fig.show()
elif isinstance(filename, PdfPages):
filename.savefig(fig)
else:
fig.savefig(filename)
示例13: plot_correlation
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def plot_correlation(hist, title="Hit correlation", xlabel=None, ylabel=None, filename=None):
logging.info("Plotting correlations")
fig = Figure()
FigureCanvas(fig)
ax = fig.add_subplot(1, 1, 1)
cmap = cm.get_cmap('jet')
extent = [hist[2][0] - 0.5, hist[2][-1] + 0.5, hist[1][-1] + 0.5, hist[1][0] - 0.5]
ax.set_title(title)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
im = ax.imshow(hist[0], extent=extent, cmap=cmap, interpolation='nearest')
ax.invert_yaxis()
# add colorbar
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
z_max = np.max(hist[0])
bounds = np.linspace(start=0, stop=z_max, num=255, endpoint=True)
norm = colors.BoundaryNorm(bounds, cmap.N)
fig.colorbar(im, boundaries=bounds, cmap=cmap, norm=norm, ticks=np.linspace(start=0, stop=z_max, num=9, endpoint=True), cax=cax)
if not filename:
fig.show()
elif isinstance(filename, PdfPages):
filename.savefig(fig)
else:
fig.savefig(filename)
示例14: plot_scatter
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def plot_scatter(x, y, x_err=None, y_err=None, title=None, legend=None, plot_range=None, plot_range_y=None, x_label=None, y_label=None, marker_style='-o', log_x=False, log_y=False, filename=None):
logging.info('Plot scatter plot %s', (': ' + title) if title is not None else '')
fig = Figure()
FigureCanvas(fig)
ax = fig.add_subplot(111)
if x_err is not None:
x_err = [x_err, x_err]
if y_err is not None:
y_err = [y_err, y_err]
if x_err is not None or y_err is not None:
ax.errorbar(x, y, xerr=x_err, yerr=y_err, fmt=marker_style)
else:
ax.plot(x, y, marker_style, markersize=1)
ax.set_title(title)
if x_label is not None:
ax.set_xlabel(x_label)
if y_label is not None:
ax.set_ylabel(y_label)
if log_x:
ax.set_xscale('log')
if log_y:
ax.set_yscale('log')
if plot_range:
ax.set_xlim((min(plot_range), max(plot_range)))
if plot_range_y:
ax.set_ylim((min(plot_range_y), max(plot_range_y)))
if legend:
ax.legend(legend, 0)
ax.grid(True)
if not filename:
fig.show()
elif isinstance(filename, PdfPages):
filename.savefig(fig)
else:
fig.savefig(filename)
示例15: plotBatchResults
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import savefig [as 别名]
def plotBatchResults(db):
'Hook called from woo.batch.writeResults'
import re,math,woo.batch,os
results=woo.batch.dbReadResults(db)
out='%s.pdf'%re.sub('\.sqlite$','',db)
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg
fig=Figure();
canvas=FigureCanvasAgg(fig)
ax1=fig.add_subplot(2,1,1)
ax2=fig.add_subplot(2,1,2)
ax1.set_xlabel('Time [s]')
ax1.set_ylabel('Kinetic energy [J]')
ax1.grid(True)
ax2.set_xlabel('Time [s]')
ax2.set_ylabel('Relative energy error')
ax2.grid(True)
for res in results:
series=res['series']
pre=res['pre']
if not res['title']: res['title']=res['sceneId']
ax1.plot(series['t'],series['kinetic'],label=res['title'],alpha=.6)
ax2.plot(series['t'],series['relErr'],label=res['title'],alpha=.6)
for ax,loc in (ax1,'lower left'),(ax2,'lower right'):
l=ax.legend(loc=loc,labelspacing=.2,prop={'size':7})
l.get_frame().set_alpha(.4)
fig.savefig(out)
print 'Batch figure saved to file://%s'%os.path.abspath(out)