本文整理汇总了Python中matplotlib.figure.Figure.gca方法的典型用法代码示例。如果您正苦于以下问题:Python Figure.gca方法的具体用法?Python Figure.gca怎么用?Python Figure.gca使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.figure.Figure
的用法示例。
在下文中一共展示了Figure.gca方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: SunPyPlot
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
class SunPyPlot(FigureCanvas):
"""SunPy preview image"""
def __init__(self, map_, width, height, parent=None, dpi=100, **matplot_args): # pylint: disable=W0613
# self._widthHint = width
# self._heightHint = height
self._origMap = map_
self._map = map_.resample((width, height))
# Old way (segfaults in some environements)
# self.figure = self._map.plot_simple(**matplot_args)
# FigureCanvas.__init__(self, self.figure)
self.figure = Figure()
self._map.plot(figure=self.figure, basic_plot=True, **matplot_args)
self.axes = self.figure.gca()
FigureCanvas.__init__(self, self.figure)
# How can we get the canvas to preserve its aspect ratio when expanding?
# sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Preferred)
# sizePolicy.setHeightForWidth(True)
# self.setSizePolicy(sizePolicy)
sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed)
self.setSizePolicy(sizePolicy)
self.setMinimumSize(QtCore.QSize(width, height))
self.setMaximumSize(QtCore.QSize(width, height))
示例2: CDF
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
class CDF(tk.Toplevel):
def __init__(self, master, name, data):
tk.Toplevel.__init__(self, master)
self.wm_title("CDF: {}".format(name))
self.fig = Figure(figsize=(4,3), dpi=100)
canvas = FigureCanvasTkAgg(self.fig, self)
canvas.get_tk_widget().pack(fill=tk.BOTH, expand=1)
toolbar = NavigationToolbar2TkAgg(canvas, self)
menubar = tk.Menu(self)
menubar.add_command(label="Save Data", command=self.save)
self.config(menu=menubar)
ax = self.fig.gca()
ax.set_title(name)
self.x, self.y = ae.cdf(data)
ax.plot(self.x, self.y, "o")
ax.loglog()
ax.grid(True)
self.update()
def save(self):
from numpy import savetxt, transpose
fname = tkFileDialog.asksaveasfilename(parent=self,
filetypes=[('Data file', '.txt .dat')])
if fname:
savetxt(fname, transpose([self.x, self.y]))
示例3: generate_scatterplot
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
def generate_scatterplot(datafname, imgfname):
"""Creates a 2D scatter plot of the specified Gocator XYZ
data and saves it in the specified image filename."""
matplotlib.rcParams['axes.formatter.limits'] = -4, 4
matplotlib.rcParams['font.size'] = 14
matplotlib.rcParams['axes.titlesize'] = 12
matplotlib.rcParams['axes.labelsize'] = 12
matplotlib.rcParams['xtick.labelsize'] = 11
matplotlib.rcParams['ytick.labelsize'] = 11
figure = Figure()
canvas = FigureCanvas(figure)
axes = figure.gca()
x,y,z = np.genfromtxt(datafname, delimiter=",", unpack=True)
xi = x[z!=-32.768]
yi = y[z!=-32.768]
zi = z[z!=-32.768]
scatter_plt = axes.scatter(xi, yi, c=zi, cmap=cm.get_cmap("Set1"), marker=',')
axes.grid(True)
axes.axis([np.min(xi), np.max(xi), np.min(yi), np.max(yi)])
axes.set_title(os.path.basename(datafname))
colorbar = figure.colorbar(scatter_plt)
colorbar.set_label("Range [mm]")
axes.set_xlabel("Horizontal Position [mm]")
axes.set_ylabel("Scan Position [mm]")
figure.savefig(imgfname)
示例4: preprocess
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
def preprocess(self, low=0.32, high=2.55, UV=0, fit_order=1, idx_in=3):
plt.close('all') # hack!
low, high, UV = float(low), float(high), float(UV)
self.pp_bounds = (low, high, UV)
fit_order = int(fit_order)
idx_in = int(idx_in)
if self.hapke_scalar.needs_isow:
# initialize isow as a scalar
isoind1, isoind2 = np.searchsorted(self.calspec[:,0], (low, high))
self.hapke_scalar.set_isow(self.calspec[isoind1:isoind2,1].mean())
# run preprocessing on each spectrum
for key, traj in self.spectra.items():
self.pp_spectra[key] = analysis.preprocess_traj(traj, low, high, UV,
fit_order=fit_order, idx = idx_in)
# plot the results
fig = Figure(figsize=(6, 4), frameon=False, tight_layout=True)
ax = fig.gca()
#If additional files exist we plot them
for k in self.pp_spectra:
ax.plot(*self.pp_spectra[k].T, label=k)
ax.legend(fontsize='small', loc='best')
ax.set_title('Preprocessed spectra')
ax.set_xlabel('Wavelength ($\mu{}m)$')
ax.set_ylabel('Reflectance')
#pp is the parameter used for identifying the download data.
return 'Preprocessing complete: ', 'pp', [fig]
示例5: sample_fits
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
def sample_fits(mcmc_set):
tspan = mcmc_set.chains[0].options.tspan
fig = Figure()
ax = fig.gca()
plot_filename = '%s_sample_fits.png' % mcmc_set.name
thumbnail_filename = '%s_sample_fits_th.png' % mcmc_set.name
# Make sure we can call the method 'get_observable_timecourses'
if not hasattr(mcmc_set.chains[0], 'get_observable_timecourses') or \
not hasattr(mcmc_set.chains[0], 'plot_data'):
return Result('None', None)
# Plot the original data
mcmc_set.chains[0].plot_data(ax)
# Plot a sampling of trajectories from the original parameter set
try:
for i in range(num_samples):
position = mcmc_set.get_sample_position()
timecourses = mcmc_set.chains[0].get_observable_timecourses(
position=position)
for obs_name, timecourse in timecourses.iteritems():
ax.plot(tspan, timecourse, color='g', alpha=0.1, label=obs_name)
except NoPositionsException as npe:
pass
canvas = FigureCanvasAgg(fig)
fig.set_canvas(canvas)
fig.savefig(plot_filename)
fig.savefig(thumbnail_filename, dpi=10)
return ThumbnailResult(thumbnail_filename, plot_filename)
示例6: residuals_at_max_likelihood
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
def residuals_at_max_likelihood(mcmc_set):
# Get the maximum likelihood parameters
try:
(max_likelihood, max_likelihood_position) = mcmc_set.maximum_likelihood()
except NoPositionsException as npe:
return Result(None, None)
# Get the residuals
residuals = mcmc_set.chains[0].get_residuals(max_likelihood_position)
# Make the residuals plot
fig = Figure()
ax = fig.gca()
plot_filename = '%s_max_likelihood_residuals.png' % mcmc_set.name
thumbnail_filename = '%s_max_likelihood_residuals_th.png' % mcmc_set.name
ax.plot(residuals[0], residuals[1])
ax.set_title('Residuals at Maximum Likelihood')
#ax.xlabel('Time')
#ax.ylabel('Residual')
canvas = FigureCanvasAgg(fig)
fig.set_canvas(canvas)
fig.savefig(plot_filename)
fig.savefig(thumbnail_filename, dpi=10)
return ThumbnailResult(thumbnail_filename, plot_filename)
示例7: Matplotlib1DWidget
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
class Matplotlib1DWidget(FigureCanvas):
def __init__(self, parent, grid, count, vmin=None, vmax=None, legend=None, codim=1, dpi=100):
assert grid.reference_element is line
assert codim in (0, 1)
self.figure = Figure(dpi=dpi)
self.axes = self.figure.gca()
self.axes.hold(True)
lines = tuple()
for _ in xrange(count):
l, = self.axes.plot(grid.centers(codim), np.zeros_like(grid.centers(codim)))
lines = lines + (l,)
self.axes.set_ylim(vmin, vmax)
if legend:
self.axes.legend(legend)
self.lines = lines
super(Matplotlib1DWidget, self).__init__(self.figure)
self.setParent(parent)
self.setMinimumSize(300, 300)
self.setSizePolicy(QSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding))
def set(self, U, ind):
for line, u in izip(self.lines, U):
line.set_ydata(u[ind])
self.draw()
示例8: acf_of_ml_residuals
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
def acf_of_ml_residuals(mcmc_set):
# Get the maximum likelihood parameters
try:
(max_likelihood, max_likelihood_position) = mcmc_set.maximum_likelihood()
except NoPositionsException as npe:
return Result(None, None)
# Get the residuals
residuals = mcmc_set.chains[0].get_residuals(max_likelihood_position)
# Plot the autocorrelation function
acf = np.correlate(residuals[1], residuals[1], mode='full')
plot_filename = '%s_acf_of_ml_residuals.png' % mcmc_set.name
thumbnail_filename = '%s_acf_of_ml_residuals_th.png' % mcmc_set.name
fig = Figure()
ax = fig.gca()
ax.plot(acf)
ax.set_title('Autocorrelation of Maximum Likelihood Residuals')
canvas = FigureCanvasAgg(fig)
fig.set_canvas(canvas)
fig.savefig(plot_filename)
fig.savefig(thumbnail_filename, dpi=10)
return ThumbnailResult(thumbnail_filename, plot_filename)
示例9: tBidBax_kd
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
def tBidBax_kd(mcmc_set):
""" .. todo:: document the basis for this"""
num_kds = 10000
# Get indices for the tBid/Bax binding constants
estimate_params = mcmc = mcmc_set.chains[0].options.estimate_params
tBid_iBax_kf_index = None
tBid_iBax_kr_index = None
for i, p in enumerate(estimate_params):
if p.name == 'tBid_iBax_kf':
tBid_iBax_kf_index = i
elif p.name == 'tBid_iBax_kr':
tBid_iBax_kr_index = i
# If we couldn't find the parameters, return None for the result
if tBid_iBax_kf_index is None or tBid_iBax_kr_index is None:
return Result(None, None)
# Sample the kr/kf ratio across the pooled chains
kd_dist = np.zeros(num_kds)
for i in range(num_kds):
position = mcmc_set.get_sample_position()
kd_dist[i] = ((10 ** position[tBid_iBax_kr_index]) /
(10 ** position[tBid_iBax_kf_index]))
# Calculate the mean and variance
mean = kd_dist.mean()
sd = kd_dist.std()
# Plot the Kd distribution
plot_filename = '%s_tBidiBax_kd_dist.png' % mcmc_set.name
fig = Figure()
ax = fig.gca()
ax.hist(kd_dist)
canvas = FigureCanvasAgg(fig)
fig.set_canvas(canvas)
fig.savefig(plot_filename)
return MeanSdResult(mean, sd, plot_filename)
示例10: Histogram
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
class Histogram(tk.Toplevel):
def __init__(self, master, name, data):
tk.Toplevel.__init__(self, master)
self.wm_title("Histogram: {}".format(name))
self.fig = Figure(figsize=(4,3), dpi=100)
canvas = FigureCanvasTkAgg(self.fig, self)
canvas.get_tk_widget().pack(fill=tk.BOTH, expand=1)
toolbar = NavigationToolbar2TkAgg(canvas, self)
menubar = tk.Menu(self)
menubar.add_command(label="Save Data", command=self.save)
self.config(menu=menubar)
ax = self.fig.gca()
ax.set_title(name)
self.hist, self.bins, _ = ae.hist(data, ax=ax, density=True)
self.update()
def save(self):
from numpy import savetxt, transpose
fname = tkFileDialog.asksaveasfilename(parent=self,
filetypes=[('Data file', '.txt .dat')])
if fname:
savetxt(fname, transpose([self.bins[:-1], self.bins[1:], self.hist]))
示例11: plot_parameter_curve
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
def plot_parameter_curve(mcmc_set, p_index, p_name):
# Make sure we've already run the fits for this mcmc set!
if mcmc_set.name not in two_exp_fits_dict.keys():
raise Exception('%s not found in two_exp_fits_dict!' % mcmc_set.name)
# Make sure we've already run the fits for the data!
if 'data' not in two_exp_fits_dict.keys():
fit_data(mcmc_set)
# Get the parameter array
p_arr = two_exp_fits_dict[mcmc_set.name][p_index]
p_arr_data = two_exp_fits_dict['data'][p_index]
data = mcmc_set.chains[0].data
plot_filename = '%s_%s_curve.png' % (mcmc_set.name, p_name)
thumbnail_filename = '%s_%s_curve_th.png' % (mcmc_set.name, p_name)
# Plot of parameter
fig = Figure()
ax = fig.gca()
ax.plot(data.columns, p_arr, 'b')
ax.plot(data.columns, p_arr_data, marker='o', linestyle='', color='r')
ax.set_ylabel('%s value' % p_name)
ax.set_xlabel('[Bax] (nM)')
ax.set_title('%s for %s' % (mcmc_set.name, p_name))
canvas = FigureCanvasAgg(fig)
fig.set_canvas(canvas)
fig.savefig(plot_filename)
fig.savefig(thumbnail_filename, dpi=10)
return ThumbnailResult(thumbnail_filename, plot_filename)
示例12: PlotPlotPanel
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
class PlotPlotPanel(wx.Panel):
def __init__(self, parent, dpi=None, **kwargs):
wx.Panel.__init__(self, parent, wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, **kwargs)
self.ztv_frame = self.GetTopLevelParent()
self.figure = Figure(dpi=None, figsize=(1.,1.))
self.axes = self.figure.add_subplot(111)
self.canvas = FigureCanvasWxAgg(self, -1, self.figure)
self.Bind(wx.EVT_SIZE, self._onSize)
self.axes_widget = AxesWidget(self.figure.gca())
self.axes_widget.connect_event('motion_notify_event', self.on_motion)
self.plot_point = None
def on_motion(self, evt):
if evt.xdata is not None:
xarg = np.abs(self.ztv_frame.plot_panel.plot_positions - evt.xdata).argmin()
ydata = self.ztv_frame.plot_panel.plot_im_values[xarg]
self.ztv_frame.plot_panel.cursor_position_textctrl.SetValue('{0:.6g},{1:.6g}'.format(evt.xdata, ydata))
if self.plot_point is None:
self.plot_point, = self.axes.plot([evt.xdata], [ydata], 'xm')
else:
self.plot_point.set_data([[evt.xdata], [ydata]])
self.figure.canvas.draw()
def _onSize(self, event):
self._SetSize()
def _SetSize(self):
pixels = tuple(self.GetClientSize())
self.SetSize(pixels)
self.canvas.SetSize(pixels)
self.figure.set_size_inches(float(pixels[0])/self.figure.get_dpi(), float(pixels[1])/self.figure.get_dpi())
示例13: initialize
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
def initialize(self):
fig = Figure(facecolor=(0.7490196,0.7490196,0.7490196,1), tight_layout=True)
self.canvas = FigureCanvasWxAgg(self, -1, fig)
self.canvas.SetExtraStyle(wx.EXPAND)
self.ax = fig.gca(projection='3d', axisbg=(0.7490196,0.7490196,0.7490196,1))
self.Bind(wx.EVT_SIZE, self.onSize)
self.Layout()
示例14: plot_emcee_fits
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
def plot_emcee_fits(gf, sampler, sample=True, burn=None, nsamples=100,
plot_filename=None):
"""Plot fits from the MCMC chain vs. the data."""
if not DISPLAY and plot_filename is None:
raise ValueError("DISPLAY is set to False but plot_filename is None, "
"so there will be no output.")
set_fig_params_for_publication()
# If we're plotting samples, get the indices now and use them for
# all observables
if sample:
(nwalkers, nsteps) = sampler.chain.shape[1:3]
if burn is None:
burn = int(nsteps / 2)
walker_indices = np.random.randint(0, nwalkers, size=nsamples)
step_indices = np.random.randint(burn, nsteps, size=nsamples)
for obs_ix in range(gf.data.shape[1]):
if DISPLAY:
fig = plt.figure(figsize=(3, 3), dpi=300)
else:
fig = Figure(figsize=(3, 3), dpi=300)
ax = fig.gca()
ax.set_ylabel('$F/F_0$')
#ax.set_xlabel(r'Time (sec $\times 10^3$)')
ax.set_xlabel(r'Time')
#plt.ylim([0.7, 5.2])
ax.set_xlim([0, gf.time[-1] + 500])
#ax.set_xticks(np.linspace(0, 1e4, 6))
#ax.set_xticklabels([int(f) for f in np.linspace(0, 10, 6)])
fig.subplots_adjust(bottom=0.21, left=0.20)
# Plot the different observables
for cond_ix in range(gf.data.shape[0]):
data = gf.data[cond_ix, obs_ix, :]
ax.plot(gf.time, data, 'k', linewidth=1)
# Colors for different observables
obs_colors = ['r', 'g', 'b', 'k']
# If we're plotting samples:
if sample:
for i in xrange(nsamples):
p = sampler.chain[0, walker_indices[i], step_indices[i], :]
plot_args = {'color': obs_colors[obs_ix], 'alpha': 0.1}
gf.plot_func(p, obs_ix=obs_ix, ax=ax, plot_args=plot_args)
# Plot the maximum a posteriori fit
maxp_flat_ix = np.argmax(sampler.lnprobability[0])
maxp_ix = np.unravel_index(maxp_flat_ix,
sampler.lnprobability[0].shape)
maxp = sampler.lnprobability[0][maxp_ix]
plot_args = {'color': 'm', 'alpha': 1}
gf.plot_func(sampler.chain[0, maxp_ix[0], maxp_ix[1]], ax=ax,
obs_ix=obs_ix, plot_args=plot_args)
format_axis(ax)
if plot_filename:
obs_plot_filename = '%s.obs%d' % (plot_filename, obs_ix)
save_fig(fig, obs_plot_filename, DISPLAY)
示例15: MatplotlibWidget
# 需要导入模块: from matplotlib.figure import Figure [as 别名]
# 或者: from matplotlib.figure.Figure import gca [as 别名]
class MatplotlibWidget(FigureCanvas):
def __init__(self, parent=None):
super(MatplotlibWidget, self).__init__(Figure())
self.setParent(parent)
self.figure = Figure()
self.canvas = FigureCanvas(self.figure)
self.axes = self.figure.gca()