本文整理汇总了Python中matplotlib.colors.ColorConverter.to_rgba_array方法的典型用法代码示例。如果您正苦于以下问题:Python ColorConverter.to_rgba_array方法的具体用法?Python ColorConverter.to_rgba_array怎么用?Python ColorConverter.to_rgba_array使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.colors.ColorConverter
的用法示例。
在下文中一共展示了ColorConverter.to_rgba_array方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotBoundary
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba_array [as 别名]
def plotBoundary(dataset='iris', split=0.7, doboost=False, boostiter=5, covdiag=True, filename='', exportImg=False):
X, y, pcadim = fetchDataset(dataset)
xTr, yTr, xTe, yTe, trIdx, teIdx = trteSplitEven(X, y, split)
pca = decomposition.PCA(n_components=2)
pca.fit(xTr)
xTr = pca.transform(xTr)
xTe = pca.transform(xTe)
pX = np.vstack((xTr, xTe))
py = np.hstack((yTr, yTe))
if doboost:
## Boosting
# Compute params
priors, mus, sigmas, alphas = trainBoost(xTr, yTr, T=boostiter, covdiag=covdiag)
else:
## Simple
# Compute params
prior = computePrior(yTr)
mu, sigma = mlParams(xTr, yTr)
xRange = np.arange(np.min(pX[:, 0]), np.max(pX[:, 0]), np.abs(np.max(pX[:, 0]) - np.min(pX[:, 0])) / 100.0)
yRange = np.arange(np.min(pX[:, 1]), np.max(pX[:, 1]), np.abs(np.max(pX[:, 1]) - np.min(pX[:, 1])) / 100.0)
grid = np.zeros((yRange.size, xRange.size))
for (xi, xx) in enumerate(xRange):
for (yi, yy) in enumerate(yRange):
if doboost:
## Boosting
grid[yi, xi] = classifyBoost(np.matrix([[xx, yy]]), priors, mus, sigmas, alphas, covdiag=covdiag)
else:
## Simple
grid[yi, xi] = classify(np.matrix([[xx, yy]]), prior, mu, sigma, covdiag=covdiag)
classes = range(np.min(y), np.max(y) + 1)
ys = [i + xx + (i * xx) ** 2 for i in range(len(classes))]
colormap = cm.rainbow(np.linspace(0, 1, len(ys)))
plt.hold(True)
conv = ColorConverter()
for (color, c) in zip(colormap, classes):
try:
CS = plt.contour(xRange, yRange, (grid == c).astype(float), 15, linewidths=0.25,
colors=conv.to_rgba_array(color))
except ValueError:
pass
xc = pX[py == c, :]
plt.scatter(xc[:, 0], xc[:, 1], marker='o', c=color, s=40, alpha=0.5)
plt.xlim(np.min(pX[:, 0]), np.max(pX[:, 0]))
plt.ylim(np.min(pX[:, 1]), np.max(pX[:, 1]))
if exportImg:
plt.savefig(filename + '.png', dpi=400)
plt.clf()
else:
plt.show()
示例2: export_to_agr
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba_array [as 别名]
def export_to_agr(figure, filename, **kwargs):
"""
Export a matplotlib figure to xmgrace format.
"""
cc = ColorConverter()
agr = AgrFile()
# agr_attr_lists['color'] = ['white', 'black']
# agr_colors =
papersize = figure.get_size_inches()*120
agr.writeline('page size {}, {}'.format(*papersize))
for i, axis in enumerate(figure.axes):
agr_axis = 'g{}'.format(i)
agr.indent = 0
agr.writeline('{axis} on', axis=agr_axis)
agr.writeline('{axis} hidden false')
agr.writeline('{axis} type XY')
agr.writeline('{axis} stacked false')
agr.writeline('with {axis}')
agr.indent = 4
process_attributes(agr_axis_attrs, axis, agr, **kwargs)
for j, line in enumerate(axis.lines):
agr.kwargs['line'] = 's{}'.format(j)
process_attributes(agr_line_attrs, line, agr, '{line} ', **kwargs)
agr.writedata(line.get_xydata())
for text in axis.texts:
agr.indent = 0
agr.writeline('with string')
agr.indent = 4
process_attributes(agr_text_attrs, text, agr, 'string ', **kwargs)
# this is a text of an arrow-annotation
if hasattr(text, 'arrow_patch'):
agr.indent = 0
agr.writeline('with line')
agr.indent = 4
agr.writeline(f'line {agr_axis}')
process_attributes(agr_arrow_attrs, text, agr, 'line ', **kwargs)
agr.indent = 0
agr.writeline('line def')
agr.indent = 0
tudcol_rev = {}
for name, color in tudcolors.items():
if isinstance(color, str):
rgba, = cc.to_rgba_array(color)
tudcol_rev[tuple(rgba)] = name
for i, color in enumerate(ValueAttribute.attr_lists['color']):
# print(i, color)
if color is not 'none':
rgba, = cc.to_rgba_array(color)
rgb_tuple = tuple(int(255 * c) for c in rgba[:3])
color_name = tudcol_rev.get(tuple(rgba), color)
agr.writeline('map color {index} to {rgb}, "{color}"',
part='head', index=i, rgb=rgb_tuple, color=color_name)
agr.save(filename)
示例3: plotBoundary
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba_array [as 别名]
def plotBoundary(dataset='iris',split=0.7,doboost=False,boostiter=5,covdiag=True):
X,y,pcadim = fetchDataset(dataset)
xTr,yTr,xTe,yTe,trIdx,teIdx = trteSplitEven(X,y,split)
pca = decomposition.PCA(n_components=2)
pca.fit(xTr)
xTr = pca.transform(xTr)
xTe = pca.transform(xTe)
pX = np.vstack((xTr, xTe))
py = np.hstack((yTr, yTe))
#print "Steg 1 #####################\n"
if doboost:
## Boosting
# Compute params
priors,mus,sigmas,alphas = trainBoost(xTr,yTr,T=boostiter)
else:
## Simple
# Compute params
prior = computePrior(yTr)
mu, sigma = mlParams(xTr,yTr)
#print "Slut Steg 1 ##########################\n"
xRange = np.arange(np.min(pX[:,0]),np.max(pX[:,0]),0.1)
yRange = np.arange(np.min(pX[:,1]),np.max(pX[:,1]),0.1)
grid = np.zeros((yRange.size, xRange.size))
for (xi, xx) in enumerate(xRange):
#print xx
#print xi
for (yi, yy) in enumerate(yRange):
if doboost:
## Boosting
X = np.matrix([[xx,yy]])
grid_point = classifyBoost(X,priors,mus,sigmas,alphas, covdiag=covdiag)
#print grid_point
#xx = int(xx)
#yy = int (yy)
grid[yi,xi]=grid_point
else:
## Simple
#print "fore grid ###############\n"
#print classify(np.matrix([[xx, yy]]),prior,mu,sigma,covdiag=covdiag)
#grid[yi,xi] = classify(np.matrix([[xx, yy]]),prior,mu,sigma,covdiag=covdiag)
grid[yi,xi] = classify(list([[xx, yy]]),prior,mu,sigma,covdiag=covdiag)
#print "efter grid ##############\n"
classes = range(np.min(y), np.max(y)+1)
ys = [i+xx+(i*xx)**2 for i in range(len(classes))]
colormap = cm.rainbow(np.linspace(0, 1, len(ys)))
plt.hold(True)
conv = ColorConverter()
for (color, c) in zip(colormap, classes):
CS = plt.contour(xRange,yRange,(grid==c).astype(float),15,linewidths=0.25,colors=conv.to_rgba_array(color))
xc = pX[py == c, :]
plt.scatter(xc[:,0],xc[:,1],marker='o',c=color,s=40,alpha=0.5)
plt.xlim(np.min(pX[:,0]),np.max(pX[:,0]))
plt.ylim(np.min(pX[:,1]),np.max(pX[:,1]))
plt.show()