本文整理汇总了Python中matplotlib.colors.ColorConverter.to_rgba方法的典型用法代码示例。如果您正苦于以下问题:Python ColorConverter.to_rgba方法的具体用法?Python ColorConverter.to_rgba怎么用?Python ColorConverter.to_rgba使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.colors.ColorConverter
的用法示例。
在下文中一共展示了ColorConverter.to_rgba方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def __init__(self, c1, c2=None, cluster=None):
c= ColorConverter()
if c2 is None:
self.mincol,self.maxcol = c.to_rgba(c1[0]), c.to_rgba(c1[1])
else:
self.mincol, self.maxcol = c.to_rgba(c1), c.to_rgba(c2)
self.cluster = cluster
示例2: plot2
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def plot2(self):
"""
plot curves of function integrand for different beta values
"""
from matplotlib.collections import LineCollection
from matplotlib.colors import ColorConverter
colorConverter = ColorConverter()
slab = SlabModel() # R is unimportant
eta = linspace(0.0, 1.0, num=100)
fig = P.figure(1)
P.clf()
#
#--- subplot 1: Fixed lambda, varying beta
ax1 = fig.add_subplot(2,1,1)
ax1.set_xlim((0.0, 1.0))
beta = linspace(0.0, 1.0, num=10)
ym = [ slab.PaulMcSpaddenIntegrand(eta, beta=b, m=3) for b in beta ]
line_segments = LineCollection( [ zip(eta,y) for y in ym ],
colors = [colorConverter.to_rgba(i) \
for i in ('b','g','r','c','m','y','k')]
)
ax1.add_collection( line_segments, autolim=True )
ax1.autoscale_view()
axhline()
ax1.set_xlabel(r'$\eta\quad\quad(m=3)$')
ax1.set_ylabel(r'$\mbox{erf}(\beta\eta)\sin(\lambda_m\eta)$')
#
#--- subplot 2: Fixed beta, varying lambda
ax2 = fig.add_subplot(2,1,2)
ax2.set_xlim((0.0, 1.0))
ym = [ slab.PaulMcSpaddenIntegrand(eta, beta=0.27, m=m) for m in range(10) ]
line_segments = LineCollection( [ zip(eta,y) for y in ym ],
colors = [colorConverter.to_rgba(i) \
for i in ('b','g','r','c','m','y','k')]
)
ax2.add_collection( line_segments, autolim=True )
ax2.autoscale_view()
axhline()
ax2.set_xlabel(r'$\eta\quad\quad(\beta=0.27)$')
ax2.set_ylabel(r'$\mbox{erf}(\beta\eta)\sin(\lambda_m\eta)$')
P.show()
return
示例3: _set_ax_pathcollection_to_bw
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def _set_ax_pathcollection_to_bw(collection, ax, style, colormap):
'''helper function for converting a pathcollection to black and white
Parameters
----------
collection : pathcollection
ax : axes
style : {GREYSCALE, HATCHING}
colormap : dict
mapping of color to B&W rendering
'''
color_converter = ColorConverter()
colors = {}
for key, value in color_converter.colors.items():
colors[value] = key
rgb_orig = collection._facecolors_original
rgb_orig = [color_converter.to_rgb(row) for row in rgb_orig]
new_color = [color_converter.to_rgba(colormap[entry]['fill']) for entry
in rgb_orig]
new_color = np.asarray(new_color)
collection.update({'facecolors' : new_color})
collection.update({'edgecolors' : new_color})
示例4: _set_ax_polycollection_to_bw
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def _set_ax_polycollection_to_bw(collection, ax, style):
'''helper function for converting a polycollection to black and white
Parameters
----------
collection : polycollection
ax : axes
style : {GREYSCALE, HATCHING}
'''
if style==GREYSCALE:
color_converter = ColorConverter()
for polycollection in ax.collections:
rgb_orig = polycollection._facecolors_original
if rgb_orig in COLORMAP.keys():
new_color = color_converter.to_rgba(COLORMAP[rgb_orig]['fill'])
new_color = np.asarray([new_color])
polycollection.update({'facecolors' : new_color})
polycollection.update({'edgecolors' : new_color})
elif style==HATCHING:
rgb_orig = collection._facecolors_original
collection.update({'facecolors' : 'none'})
collection.update({'edgecolors' : 'white'})
collection.update({'alpha':1})
for path in collection.get_paths():
p1 = mpl.patches.PathPatch(path, fc="none",
hatch=COLORMAP[rgb_orig]['hatch'])
ax.add_patch(p1)
p1.set_zorder(collection.get_zorder()-0.1)
示例5: drawImpacts
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def drawImpacts(self):
# Load the dataset
dataset = self.datasetManager.loadDataset(self.datasetManager.getAccuracyComplete())
# Create the scene
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.set_aspect("equal")
ax.set_xlabel('X (horizontal in mm)')
ax.set_ylabel('Y (vertical in mm)')
ax.set_zlabel('Z (depth in mm)')
colorConverter = ColorConverter()
for data in dataset:
result = self.featureExtractor.getFeatures(data)
# Processed data
fingerTipCoordinates = self.featureExtractor.fingerTip[0]
eyeCoordinates = self.featureExtractor.eyePosition[0]
targetCoordinates = data.target
depthMap = data.depth_map
fingerTipCoordinates.append(self.utils.getDepthFromMap(depthMap, fingerTipCoordinates))
eyeCoordinates.append(self.utils.getDepthFromMap(depthMap, eyeCoordinates))
closest = self.trigonometry.findIntersection(fingerTipCoordinates, eyeCoordinates, targetCoordinates, self.expectedRadius)
if closest != None:
x = closest[0]-targetCoordinates[0]
y = closest[1]-targetCoordinates[1]
z = closest[2]-targetCoordinates[2]
distance = self.trigonometry.findIntersectionDistance(fingerTipCoordinates, eyeCoordinates, targetCoordinates, self.expectedRadius)
red = 1-(distance/200)
if red < 0:
red = 0
elif red > 1:
red = 1
blue = 0+(distance/200)
if blue < 0:
blue = 0
elif blue > 1:
blue = 1
cc = colorConverter.to_rgba((red,0,blue), 0.4)
# Draw the impact point
ax.scatter(x, y, z, color=cc, marker="o", s=50)
# Draw the target point
ax.scatter(0, 0, 0, c="#000000", marker="o", color="#000000", s=100)
plt.show()
示例6: _plot_ribbon_using_bezier
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def _plot_ribbon_using_bezier(ax, zorder, points1, points2, color1="gray",
color2="gray", lw=1):
""" Draw ribbon for alluvial diagram (see plot_alluvial)
Parameters
----------
ax : a matplotlib.axes object
zorder : float
the zorder for the ribbon
points1 : iterable of float tuples
the points, which determine the first line of the Bezier ribbon
points2 : iterable of float tuples
the points, which determine the second line of the Bezier ribbon
color1 : a matplotlib compliant color definition
color for the left side of the ribbon
color1 : a matplotlib compliant color definition
color for the right side of the ribbon
lw : float
linewidth for the bezier borders
"""
cc = ColorConverter()
color1 = np.array(cc.to_rgba(color1))
color2 = np.array(cc.to_rgba(color2))
tRange = np.linspace(0, 1, 100)
xpointsList = []
ypointsList = []
for points in [points1, points2]:
points = np.array(points)
p1 = points[0]
p2 = points[1]
p3 = points[2]
p4 = points[3]
allPoints = (p1[:, np.newaxis] * (1 - tRange) ** 3 + p2[:, np.newaxis]
* (3 * (1 - tRange) ** 2 * tRange) + p3[:, np.newaxis] *
(3 * (1 - tRange) * tRange ** 2) + p4[:, np.newaxis] *
tRange ** 3)
xpoints = allPoints[0]
xpointsList.append(xpoints)
ypoints = allPoints[1]
ypointsList.append(ypoints)
ax.plot(xpoints, ypoints, "0.85", lw=lw, zorder=zorder + 0.5)
xpoints = xpointsList[0]
if (mpl.colors.colorConverter.to_rgba_array(color1) ==
mpl.colors.colorConverter.to_rgba_array(color2)).all():
ax.fill_between(xpoints, ypointsList[0], ypointsList[1], lw=lw,
facecolor=color1, edgecolor=color1, zorder=zorder)
else:
for i in range(len(tRange) - 1):
#mean = (tRange[i]+tRange[i+1])*0.5
xnow = np.mean(xpoints[i:i + 2])
norm_mean = (xnow - xpoints[0]) / (xpoints[-1] - xpoints[0])
color = color1 * (1 - norm_mean) + color2 * norm_mean
ax.fill_between(xpoints[i:i + 2], ypointsList[0][i:i + 2],
ypointsList[1][i:i + 2], lw=lw, facecolor=color,
edgecolor=color, zorder=zorder)
示例7: set_legend_to_bw
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def set_legend_to_bw(leg, style, colormap, line_style='continuous'):
"""
Takes the figure legend and converts it to black and white. Note that
it currently only converts lines to black and white, other artist
intances are currently not being supported, and might cause errors or
other unexpected behavior.
Parameters
----------
leg : legend
style : {GREYSCALE, HATCHING}
colormap : dict
mapping of color to B&W rendering
line_style: str
linestyle to use for converting, can be continuous, black
or None
# TODO:: None is strange as a value, and should be field based, see
# set_ax_lines_bw
"""
color_converter = ColorConverter()
if leg:
if isinstance(leg, list):
leg = leg[0]
for element in leg.legendHandles:
if isinstance(element, mpl.collections.PathCollection):
rgb_orig = color_converter.to_rgb(element._facecolors[0])
new_color = color_converter.to_rgba(colormap[rgb_orig]['fill'])
element._facecolors = np.array((new_color,))
elif isinstance(element, mpl.patches.Rectangle):
rgb_orig = color_converter.to_rgb(element._facecolor)
if style==HATCHING:
element.update({'alpha':1})
element.update({'facecolor':'none'})
element.update({'edgecolor':'black'})
element.update({'hatch':colormap[rgb_orig]['hatch']})
elif style==GREYSCALE:
ema_logging.info(colormap.keys())
element.update({'facecolor':colormap[rgb_orig]['fill']})
element.update({'edgecolor':colormap[rgb_orig]['fill']})
else:
line = element
orig_color = line.get_color()
line.set_color('black')
if not line_style=='continuous':
line.set_dashes(colormap[orig_color]['dash'])
line.set_marker(colormap[orig_color]['marker'])
line.set_markersize(MARKERSIZE)
示例8: visualizeHaarFeatures
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def visualizeHaarFeatures():
fig = figure()
ax = fig.add_subplot(111)
ax.set_xlim([0, 1]) # pylab.xlim([-400, 400])
ax.set_ylim([0, 1]) # pylab.ylim([-400, 400])
patches = []
cc = ColorConverter()
outer = cc.to_rgba("#BFCBDE", alpha=0.5)
inner = cc.to_rgba("RED", alpha=0.5)
for row in generateHaarFeatures(100):
#print row
patches.append(
gca().add_patch(Rectangle((row[0], row[1]), row[2]-row[0], row[3]-row[1], color=outer)))
patches.append(
gca().add_patch(Rectangle((row[4], row[5]), row[6]-row[4], row[7]-row[5], color=inner)))
p = collections.PatchCollection(patches)
patches = ax.add_collection(p)
show()
示例9: drawImpacts2D
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def drawImpacts2D(self, x=True, y=True, z=False):
# Load the dataset
dataset = self.datasetManager.loadDataset(self.datasetManager.getAccuracyComplete())
plt.axis("equal")
colorConverter = ColorConverter()
for data in dataset:
result = self.featureExtractor.getFeatures(data)
# Processed data
fingerTipCoordinates = self.featureExtractor.fingerTip[0]
eyeCoordinates = self.featureExtractor.eyePosition[0]
targetCoordinates = data.target
depthMap = data.depth_map
fingerTipCoordinates.append(self.utils.getDepthFromMap(depthMap, fingerTipCoordinates))
eyeCoordinates.append(self.utils.getDepthFromMap(depthMap, eyeCoordinates))
closest = self.trigonometry.findIntersection(fingerTipCoordinates, eyeCoordinates, targetCoordinates, self.expectedRadius)
if closest != None:
x = closest[0]-targetCoordinates[0]
y = closest[1]-targetCoordinates[1]
z = closest[2]-targetCoordinates[2]
distance = self.trigonometry.findIntersectionDistance(fingerTipCoordinates, eyeCoordinates, targetCoordinates, self.expectedRadius)
red = 1-(distance/200)
if red < 0:
red = 0
elif red > 1:
red = 1
blue = 0+(distance/200)
if blue < 0:
blue = 0
elif blue > 1:
blue = 1
cc = colorConverter.to_rgba((red,0,blue), 0.4)
if not x:
plt.scatter(y, z, color=cc, marker="o", s=50)
elif not y:
plt.scatter(x, z, color=cc, marker="o", s=50)
else:
plt.scatter(x, y, color=cc, marker="o", s=50)
plt.show()
示例10: set_legend_to_bw
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def set_legend_to_bw(leg, style):
"""
Takes the figure legend and converts it to black and white. Note that
it currently only converts lines to black and white, other artist
intances are currently not being supported, and might cause errors or
other unexpected behavior.
Parameters
----------
leg : legend
style : {GREYSCALE, HATCHING}
"""
color_converter = ColorConverter()
colors = {}
for key, value in color_converter.colors.items():
colors[value] = key
if leg:
if isinstance(leg, list):
leg = leg[0]
for element in leg.legendHandles:
if isinstance(element, mpl.collections.PathCollection):
rgb_orig = color_converter.to_rgb(element._facecolors[0])
origColor = colors[rgb_orig]
new_color = color_converter.to_rgba(COLORMAP[origColor]['fill'])
element._facecolors = np.array((new_color,))
elif isinstance(element, mpl.patches.Rectangle):
rgb_orig = color_converter.to_rgb(element._facecolor)
c = colors[rgb_orig]
if style==HATCHING:
element.update({'alpha':1})
element.update({'facecolor':'none'})
element.update({'edgecolor':'black'})
element.update({'hatch':COLORMAP[c]['hatch']})
elif style==GREYSCALE:
element.update({'facecolor':COLORMAP[c]['fill']})
element.update({'edgecolor':COLORMAP[c]['fill']})
else:
line = element
origColor = line.get_color()
line.set_color('black')
line.set_dashes(COLORMAP[origColor]['dash'])
line.set_marker(COLORMAP[origColor]['marker'])
line.set_markersize(MARKERSIZE)
示例11: _set_ax_polycollection_to_bw
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def _set_ax_polycollection_to_bw(collection, ax, style, colormap):
'''helper function for converting a polycollection to black and white
Parameters
----------
collection : polycollection
ax : axes
style : {GREYSCALE, HATCHING}
colormap : dict
mapping of color to B&W rendering
'''
if style == GREYSCALE:
color_converter = ColorConverter()
for polycollection in ax.collections:
orig_color = polycollection._original_facecolor
try:
mapping = colormap[orig_color]
except BaseException:
ema_logging.warning(
'no mapping specified for color: {}'.format(orig_color))
else:
new_color = color_converter.to_rgba(mapping['fill'])
new_color = np.asarray([new_color])
polycollection.update({'facecolors': new_color})
polycollection.update({'edgecolors': new_color})
elif style == HATCHING:
orig_color = collection._original_facecolor
try:
mapping = colormap[orig_color]
except BaseException:
ema_logging.warning(
'no mapping specified for color: {}'.format(orig_color))
else:
collection.update({'facecolors': 'none'})
collection.update({'edgecolors': 'white'})
collection.update({'alpha': 1})
for path in collection.get_paths():
p1 = mpl.patches.PathPatch(path, fc="none",
hatch=colormap[orig_color]['hatch'])
ax.add_patch(p1)
p1.set_zorder(collection.get_zorder() - 0.1)
示例12: set_ax_patches_bw
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def set_ax_patches_bw(ax):
"""
Take each patch in the axes, ax, and convert the face color to be
suitable for black and white viewing.
Parameters
----------
ax : axes
The ax of which the patches needs to be transformed to B&W.
"""
color_converter = ColorConverter()
for patch in ax.patches:
rgb_orig = color_converter.to_rgb(patch._facecolor)
new_color = color_converter.to_rgba(COLORMAP[rgb_orig]['fill'])
patch._facecolor = new_color
示例13: test
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def test():
n = 1
colors = ch.get_distinct_colors(n)
assert len(colors) is 1
n = 10
colors = ch.get_distinct_colors(n)
assert len(colors) is 10
colors = ch.get_arbitrary_n_of_distinct_colors(11)
assert len(colors) is 11
colors = ch.get_qualitative_brewer_colors(12)
assert len(colors) is 12
colors2 = ch.get_qualitative_brewer_colors(10)
# same first colors should be returned with 10-12 colors used:
assert (colors[9] == colors2[-1]).all()
cc = ColorConverter()
for color in colors:
assert len(cc.to_rgba(color)) is 4
示例14: __init__
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def __init__(
self,
event_name,
event_csv,
colors,
time_chunk_name='minutes',
count_name='tweet_count'):
# Set label parameters.
self.event_name = event_name
self.chunk_name = time_chunk_name
self.count_name = count_name
#Convert Colors to MPL format
cv = ColorConverter()
self.event_color = cv.to_rgba(colors[0])
self.rumor_color = cv.to_rgba(colors[1])
# Process the event CSV.
self.event_counts = self.csv_to_counts(event_csv, event_csv=True)
self.event_y = list(self.event_counts[self.count_name])
self.event_x = range(self.event_counts.num_rows())
示例15: mpl_to_qt_color
# 需要导入模块: from matplotlib.colors import ColorConverter [as 别名]
# 或者: from matplotlib.colors.ColorConverter import to_rgba [as 别名]
def mpl_to_qt_color(color, alpha=None):
"""
Convert a matplotlib color string into a Qt QColor object
Parameters
----------
color : str
A color specification that matplotlib understands
alpha : float
Optional opacity. Float in range [0,1]
Returns
-------
qcolor : ``QColor``
A QColor object representing the converted color
"""
if color in [None, 'none', 'None']:
return QtGui.QColor(0, 0, 0, 0)
cc = ColorConverter()
r, g, b, a = cc.to_rgba(color)
if alpha is not None:
a = alpha
return QtGui.QColor(r * 255, g * 255, b * 255, a * 255)