当前位置: 首页>>代码示例>>Python>>正文


Python colors.ColorConverter类代码示例

本文整理汇总了Python中matplotlib.colors.ColorConverter的典型用法代码示例。如果您正苦于以下问题:Python ColorConverter类的具体用法?Python ColorConverter怎么用?Python ColorConverter使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了ColorConverter类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: parse_list_of_colors

 def parse_list_of_colors(self, number, colors):
     from matplotlib.colors import ColorConverter
     cconvert = ColorConverter()
     if number != len(colors):
         raise ValueError("the length of colors must be the number of groups")
     rgbcolors = [cconvert.to_rgb(c) for c in colors]
     return rgbcolors 
开发者ID:dimaslave,项目名称:pele,代码行数:7,代码来源:disconnectivity_graph.py

示例2: get_rgb_hexad_color_palete

def get_rgb_hexad_color_palete():
    """Returns a list of RGB values with the color palette used to plot the
    transit vehicles returned by NextBus. Each entry returned in the color
    palette has the RGB hexadecimal format, and without the prefix '0x' as
    for colors in Google Maps, nor the prefix '#' for the matplotlib color.
    Ie., the entry for blue is returned as '0000FF' and for red 'FF0000'."""

    # We don't use these color names directly because their intensity might
    # be (are) reflected diferently between between the remote server and
    # matplotlib, and this difference in rendering a same color affects the
    # color-legend in matplotlib. For this reason too, we don't need to use
    # only the named colors in Google Maps but more in matplotlib, for in
    # both cases hexadecimal RGB values are really used.

    high_contrast_colors = ["green", "red", "blue", "yellow", "aqua",
                            "brown", "gray", "honeydew", "purple",
                            "turquoise", "magenta", "orange"]

    from matplotlib.colors import ColorConverter, rgb2hex

    color_converter = ColorConverter()
    hex_color_palette = [rgb2hex(color_converter.to_rgb(cname))[1:] for \
                         cname in high_contrast_colors]
    # matplotlib.colors.cnames[cname] could have been used instead of rgb2hex

    return hex_color_palette
开发者ID:je-nunez,项目名称:NextBus_real_time_Route_Bus_locations_to_Pandas_Dataframe,代码行数:26,代码来源:plot_dataframe_nextbus_vehicle_locations.py

示例3: make_colormap

    def make_colormap(self, key):
        """ define a new color map based on values specified in the color_scale file for the key"""
        #colors = {0.1:'#005a00', 0.2:'#6e0dc6',0.3:'#087fdb',0.4:'#1c47e8',0.5:'#007000'} # parsed result format from color_scale file
        colors = self.colorTable[key]
        z = sort(colors.keys()) ## keys
        n = len(z)
        z1 = min(z)
        zn = max(z)
        x0 = (z - z1) / (zn - z1)   ## normalized keys
        CC = ColorConverter()
        R = []
        G = []
        B = []
        for i in range(n):
            ## i'th color at level z[i]:
            Ci = colors[z[i]]      
            if type(Ci) == str:
                ## a hex string of form '#ff0000' for example (for red)
                RGB = CC.to_rgb(Ci)
            else:
                ## assume it's an RGB triple already:
                RGB = Ci
            R.append(RGB[0])
            G.append(RGB[1])
            B.append(RGB[2])

        cmap_dict = {}
        cmap_dict['red'] = [(x0[i],R[i],R[i]) for i in range(len(R))] ## normalized value in X0
        cmap_dict['green'] = [(x0[i],G[i],G[i]) for i in range(len(G))]
        cmap_dict['blue'] = [(x0[i],B[i],B[i]) for i in range(len(B))]
        mymap = LinearSegmentedColormap(key,cmap_dict)
        return mymap, z
开发者ID:jjhelmus,项目名称:lrose-soloPy,代码行数:32,代码来源:ColorMap.py

示例4: plot_em

def plot_em(step, X, K, amps, means, covs, z,
            newamps, newmeans, newcovs, show=True):
    import pylab as plt
    from matplotlib.colors import ColorConverter

    (N,D) = X.shape

    if z is None:
        z = np.zeros((N,K))
        for k,(amp,mean,cov) in enumerate(zip(amps, means, covs)):
            z[:,k] = amp * gaussian_probability(X, mean, cov)
        z /= np.sum(z, axis=1)[:,np.newaxis]
    
    plt.clf()
    # snazzy color coding
    cc = np.zeros((N,3))
    CC = ColorConverter()
    for k in range(K):
        rgb = np.array(CC.to_rgb(colors[k]))
        cc += z[:,k][:,np.newaxis] * rgb[np.newaxis,:]

    plt.scatter(X[:,0], X[:,1], color=cc, s=9, alpha=0.5)

    ax = plt.axis()
    for k,(amp,mean,cov) in enumerate(zip(amps, means, covs)):
        plot_ellipse(mean, cov, 'k-', lw=4)
        plot_ellipse(mean, cov, 'k-', color=colors[k], lw=2)

    plt.axis(ax)
    if show:
        plt.show()
开发者ID:LocalGroupAstrostatistics2015,项目名称:Unsupervised,代码行数:31,代码来源:utils.py

示例5: make_colormap

def make_colormap(colors):
    z = np.sort(colors.keys())
    n = len(z)
    z1 = min(z)
    zn = max(z)
    x0 = (z - z1) / (zn - z1)
    
    CC = ColorConverter()
    R = []
    G = []
    B = []
    for i in range(n):
        Ci = colors[z[i]]      
        if type(Ci) == str:
            RGB = CC.to_rgb(Ci)
        else:
            RGB = Ci
        R.append(RGB[0])
        G.append(RGB[1])
        B.append(RGB[2])

    cmap_dict = {}
    cmap_dict['red'] = [(x0[i],R[i],R[i]) for i in range(len(R))]
    cmap_dict['green'] = [(x0[i],G[i],G[i]) for i in range(len(G))]
    cmap_dict['blue'] = [(x0[i],B[i],B[i]) for i in range(len(B))]
    mymap = LinearSegmentedColormap('mymap',cmap_dict)
    return mymap
开发者ID:olga,项目名称:olga_model,代码行数:27,代码来源:colormaps.py

示例6: _set_ax_pathcollection_to_bw

def _set_ax_pathcollection_to_bw(collection, ax, style, colormap):
    '''helper function for converting a pathcollection to black and white
    
    Parameters
    ----------
    collection : pathcollection
    ax : axes
    style : {GREYSCALE, HATCHING}
    colormap : dict
               mapping of color to B&W rendering
    
    '''
    color_converter = ColorConverter()
    colors = {}
    for key, value in color_converter.colors.items():
        colors[value] = key    

    rgb_orig = collection._facecolors_original
    rgb_orig = [color_converter.to_rgb(row) for row in rgb_orig]
    
    new_color = [color_converter.to_rgba(colormap[entry]['fill']) for entry 
                 in rgb_orig]
    new_color = np.asarray(new_color)
    
    collection.update({'facecolors' : new_color}) 
    collection.update({'edgecolors' : new_color}) 
开发者ID:JamesPHoughton,项目名称:EMAworkbench,代码行数:26,代码来源:b_and_w_plotting.py

示例7: __init__

 def __init__(self, c1, c2=None, cluster=None):
     c= ColorConverter()
     if c2 is None:
         self.mincol,self.maxcol = c.to_rgba(c1[0]), c.to_rgba(c1[1])
     else:
         self.mincol, self.maxcol = c.to_rgba(c1), c.to_rgba(c2)
     self.cluster = cluster
开发者ID:BenjaminPeter,项目名称:pooGUI,代码行数:7,代码来源:SampleFrame.py

示例8: _set_ax_polycollection_to_bw

def _set_ax_polycollection_to_bw(collection, ax, style):
    '''helper function for converting a polycollection to black and white
    
    Parameters
    ----------
    collection : polycollection
    ax : axes
    style : {GREYSCALE, HATCHING}
    
    '''

    if style==GREYSCALE:

        color_converter = ColorConverter()
        for polycollection in ax.collections:
            rgb_orig = polycollection._facecolors_original
            if rgb_orig in COLORMAP.keys():
                new_color = color_converter.to_rgba(COLORMAP[rgb_orig]['fill'])
                new_color = np.asarray([new_color])
                polycollection.update({'facecolors' : new_color}) 
                polycollection.update({'edgecolors' : new_color})
    elif style==HATCHING:
        rgb_orig = collection._facecolors_original
        collection.update({'facecolors' : 'none'}) 
        collection.update({'edgecolors' : 'white'}) 
        collection.update({'alpha':1})
        
        for path in collection.get_paths():
            p1 = mpl.patches.PathPatch(path, fc="none", 
                                       hatch=COLORMAP[rgb_orig]['hatch'])
            ax.add_patch(p1)
            p1.set_zorder(collection.get_zorder()-0.1)
开发者ID:feilos,项目名称:EMAworkbench,代码行数:32,代码来源:b_and_w_plotting.py

示例9: IsValidColour

 def IsValidColour(self, color):
     """Checks if color is a valid matplotlib color"""
     try:
         cc = ColorConverter()
         cc.to_rgb(color)
         return True
     except ValueError: #invalid color
         return False
开发者ID:nrao,项目名称:deap,代码行数:8,代码来源:PlotEditFrame.py

示例10: MplToWxColour

 def MplToWxColour(self, color):
     """Converts matplotlib color (0-1) to wx.Colour (0-255)"""
     try:
         cc = ColorConverter()
         rgb = tuple([d*255 for d in cc.to_rgb(color)])
         return wx.Colour(*rgb)
     except ValueError: #invalid color
         return wx.Colour()
开发者ID:nrao,项目名称:deap,代码行数:8,代码来源:PlotEditFrame.py

示例11: drawImpacts

	def drawImpacts(self):
		# Load the dataset
		dataset = self.datasetManager.loadDataset(self.datasetManager.getAccuracyComplete())
		
		# Create the scene
		fig = plt.figure()
		ax = fig.gca(projection='3d')
		ax.set_aspect("equal")
		
		ax.set_xlabel('X (horizontal in mm)')
		ax.set_ylabel('Y (vertical in mm)')
		ax.set_zlabel('Z (depth in mm)')
		
		colorConverter = ColorConverter()
		
		for data in dataset:
			result = self.featureExtractor.getFeatures(data)
			
			# Processed data
			fingerTipCoordinates = self.featureExtractor.fingerTip[0]
			eyeCoordinates = self.featureExtractor.eyePosition[0]
			targetCoordinates = data.target
			depthMap = data.depth_map
			
			fingerTipCoordinates.append(self.utils.getDepthFromMap(depthMap, fingerTipCoordinates))
			eyeCoordinates.append(self.utils.getDepthFromMap(depthMap, eyeCoordinates))
			
			closest = self.trigonometry.findIntersection(fingerTipCoordinates, eyeCoordinates, targetCoordinates, self.expectedRadius)
			
			
			if closest != None:
				x = closest[0]-targetCoordinates[0]
				y = closest[1]-targetCoordinates[1]
				z = closest[2]-targetCoordinates[2]
				
				distance = self.trigonometry.findIntersectionDistance(fingerTipCoordinates, eyeCoordinates, targetCoordinates, self.expectedRadius)
				
				red = 1-(distance/200)
				if red < 0:
					red = 0
				elif red > 1:
					red = 1
				
				blue = 0+(distance/200)
				if blue < 0:
					blue = 0
				elif blue > 1:
					blue = 1
				
				cc = colorConverter.to_rgba((red,0,blue), 0.4)
				
				# Draw the impact point
				ax.scatter(x, y, z, color=cc, marker="o", s=50)
		
		# Draw the target point
		ax.scatter(0, 0, 0, c="#000000", marker="o", color="#000000", s=100)
		
		plt.show()
开发者ID:EdwardBetts,项目名称:pointing-gesture-recognition,代码行数:58,代码来源:accuracy.py

示例12: plotBoundary

def plotBoundary(dataset='iris', split=0.7, doboost=False, boostiter=5, covdiag=True, filename='', exportImg=False):
    X, y, pcadim = fetchDataset(dataset)
    xTr, yTr, xTe, yTe, trIdx, teIdx = trteSplitEven(X, y, split)
    pca = decomposition.PCA(n_components=2)
    pca.fit(xTr)
    xTr = pca.transform(xTr)
    xTe = pca.transform(xTe)

    pX = np.vstack((xTr, xTe))
    py = np.hstack((yTr, yTe))

    if doboost:
        ## Boosting
        # Compute params
        priors, mus, sigmas, alphas = trainBoost(xTr, yTr, T=boostiter, covdiag=covdiag)
    else:
        ## Simple
        # Compute params
        prior = computePrior(yTr)
        mu, sigma = mlParams(xTr, yTr)

    xRange = np.arange(np.min(pX[:, 0]), np.max(pX[:, 0]), np.abs(np.max(pX[:, 0]) - np.min(pX[:, 0])) / 100.0)
    yRange = np.arange(np.min(pX[:, 1]), np.max(pX[:, 1]), np.abs(np.max(pX[:, 1]) - np.min(pX[:, 1])) / 100.0)

    grid = np.zeros((yRange.size, xRange.size))

    for (xi, xx) in enumerate(xRange):
        for (yi, yy) in enumerate(yRange):
            if doboost:
                ## Boosting
                grid[yi, xi] = classifyBoost(np.matrix([[xx, yy]]), priors, mus, sigmas, alphas, covdiag=covdiag)
            else:
                ## Simple
                grid[yi, xi] = classify(np.matrix([[xx, yy]]), prior, mu, sigma, covdiag=covdiag)

    classes = range(np.min(y), np.max(y) + 1)
    ys = [i + xx + (i * xx) ** 2 for i in range(len(classes))]
    colormap = cm.rainbow(np.linspace(0, 1, len(ys)))

    plt.hold(True)
    conv = ColorConverter()
    for (color, c) in zip(colormap, classes):
        try:
            CS = plt.contour(xRange, yRange, (grid == c).astype(float), 15, linewidths=0.25,
                             colors=conv.to_rgba_array(color))
        except ValueError:
            pass
        xc = pX[py == c, :]
        plt.scatter(xc[:, 0], xc[:, 1], marker='o', c=color, s=40, alpha=0.5)

    plt.xlim(np.min(pX[:, 0]), np.max(pX[:, 0]))
    plt.ylim(np.min(pX[:, 1]), np.max(pX[:, 1]))
    if exportImg:
        plt.savefig(filename + '.png', dpi=400)
        plt.clf()
    else:
        plt.show()
开发者ID:haidelber,项目名称:machinelearning15kth,代码行数:57,代码来源:lab3.py

示例13: genImage

    def genImage(self):
        """Create a PNG from the contents of this flowable.

        Required so we can put inline math in paragraphs.
        Returns the file name.
        The file is caller's responsability.
        """
        dpi = 72
        scale = 10

        try:
            import Image
            import ImageFont
            import ImageDraw
        except ImportError:
            from PIL import (
                Image,
                ImageFont,
                ImageDraw,
            )

        if not HAS_MATPLOTLIB:
            img = Image.new('RGBA', (120, 120), (255, 255, 255, 0))
        else:
            width, height, descent, glyphs, rects, used_characters = \
                self.parser.parse(enclose(self.s), dpi,
                                  prop=FontProperties(size=self.fontsize))
            img = Image.new('RGBA', (int(width * scale), int(height * scale)),
                            (255, 255, 255, 0))
            draw = ImageDraw.Draw(img)
            for ox, oy, fontname, fontsize, num, symbol_name in glyphs:
                font = ImageFont.truetype(fontname, int(fontsize * scale))
                tw, th = draw.textsize(chr(num), font=font)
                # No, I don't understand why that 4 is there.
                # As we used to say in the pure math
                # department, that was a numerical solution.
                col_conv = ColorConverter()
                fc = col_conv.to_rgb(self.color)
                rgb_color = (
                    int(fc[0] * 255),
                    int(fc[1] * 255),
                    int(fc[2] * 255)
                )
                draw.text((ox * scale, (height - oy - fontsize + 4) * scale),
                          chr(num), font=font, fill=rgb_color)
            for ox, oy, w, h in rects:
                x1 = ox * scale
                x2 = x1 + w * scale
                y1 = (height - oy) * scale
                y2 = y1 + h * scale
                draw.rectangle([x1, y1, x2, y2], (0, 0, 0))

        fh, fn = tempfile.mkstemp(suffix=".png")
        os.close(fh)
        img.save(fn)
        return fn
开发者ID:aquavitae,项目名称:rst2pdf-py3-dev,代码行数:56,代码来源:math_flowable.py

示例14: validate_color

 def validate_color(self, color):
     """ Function for validating Matplotlib user input color choice
     """
     print color
     c = ColorConverter()
     try:
         print c.to_rgb(color)
     except:
         return False
     return True
开发者ID:c11,项目名称:TSTools,代码行数:10,代码来源:SavePlotDialog.py

示例15: compute_venn2_colors

def compute_venn2_colors(set_colors):
    '''
    Given two base colors, computes combinations of colors corresponding to all regions of the venn diagram.
    returns a list of 3 elements, providing colors for regions (10, 01, 11).
    >>> compute_venn2_colors(('r', 'g'))
    (array([ 1.,  0.,  0.]), array([ 0. ,  0.5,  0. ]), array([ 0.7 ,  0.35,  0.  ]))
    '''
    ccv = ColorConverter()
    base_colors = [np.array(ccv.to_rgb(c)) for c in set_colors]
    return (base_colors[0], base_colors[1], mix_colors(base_colors[0], base_colors[1]))
开发者ID:alexanderwhatley,项目名称:matplotlib-venn,代码行数:10,代码来源:_venn2.py


注:本文中的matplotlib.colors.ColorConverter类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。