本文整理汇总了Python中lsst.sims.photUtils.Sed.Sed.resampleSED方法的典型用法代码示例。如果您正苦于以下问题:Python Sed.resampleSED方法的具体用法?Python Sed.resampleSED怎么用?Python Sed.resampleSED使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类lsst.sims.photUtils.Sed.Sed
的用法示例。
在下文中一共展示了Sed.resampleSED方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testApplyIGM
# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import resampleSED [as 别名]
def testApplyIGM(self):
"""Test application of IGM from Lookup Tables to SED objects"""
#Test that a warning comes up if input redshift is out of range and that no changes occurs to SED
testSed = Sed()
testSed.readSED_flambda(os.environ['SIMS_SED_LIBRARY_DIR'] + '/galaxySED/Inst.80E09.25Z.spec.gz')
testFlambda = []
for fVal in testSed.flambda:
testFlambda.append(fVal)
testIGM = ApplyIGM()
testIGM.initializeIGM()
with warnings.catch_warnings(record=True) as wa:
testIGM.applyIGM(1.1, testSed)
self.assertEqual(len(wa), 1)
self.assertTrue('IGM Lookup tables' in str(wa[-1].message))
np.testing.assert_equal(testFlambda, testSed.flambda)
#Test that lookup table is read in correctly
testTable15 = np.genfromtxt(str(os.environ['SIMS_SED_LIBRARY_DIR'] + '/igm/' +
'MeanLookupTable_zSource1.5.tbl'))
np.testing.assert_equal(testTable15, testIGM.meanLookups['1.5'])
#Test output by making sure that an incoming sed with flambda = 1.0 everywhere will return the
#transmission values of the lookup table as its flambda output
testSed.setSED(testSed.wavelen, flambda = np.ones(len(testSed.wavelen)))
testIGM.applyIGM(1.5, testSed)
testTable15Above300 = testTable15[np.where(testTable15[:,0] >= 300.0)]
testSed.resampleSED(wavelen_match = testTable15Above300[:,0])
np.testing.assert_allclose(testTable15Above300[:,1], testSed.flambda, 1e-4)
示例2: testAlternateBandpassesStars
# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import resampleSED [as 别名]
def testAlternateBandpassesStars(self):
"""
This will test our ability to do photometry using non-LSST bandpasses.
It will first calculate the magnitudes using the getters in cartoonPhotometryStars.
It will then load the alternate bandpass files 'by hand' and re-calculate the magnitudes
and make sure that the magnitude values agree. This is guarding against the possibility
that some default value did not change and the code actually ended up loading the
LSST bandpasses.
"""
obs_metadata_pointed = ObservationMetaData(
mjd=2013.23, boundType="circle", unrefractedRA=200.0, unrefractedDec=-30.0, boundLength=1.0
)
bandpassDir = os.path.join(lsst.utils.getPackageDir("sims_photUtils"), "tests", "cartoonSedTestData")
cartoon_dict = BandpassDict.loadTotalBandpassesFromFiles(
["u", "g", "r", "i", "z"], bandpassDir=bandpassDir, bandpassRoot="test_bandpass_"
)
testBandPasses = {}
keys = ["u", "g", "r", "i", "z"]
bplist = []
for kk in keys:
testBandPasses[kk] = Bandpass()
testBandPasses[kk].readThroughput(os.path.join(bandpassDir, "test_bandpass_%s.dat" % kk))
bplist.append(testBandPasses[kk])
sedObj = Sed()
phiArray, waveLenStep = sedObj.setupPhiArray(bplist)
sedFileName = os.path.join(lsst.utils.getPackageDir("sims_sed_library"), "starSED", "kurucz")
sedFileName = os.path.join(sedFileName, "km20_5750.fits_g40_5790.gz")
ss = Sed()
ss.readSED_flambda(sedFileName)
controlBandpass = Bandpass()
controlBandpass.imsimBandpass()
ff = ss.calcFluxNorm(22.0, controlBandpass)
ss.multiplyFluxNorm(ff)
testMags = cartoon_dict.magListForSed(ss)
ss.resampleSED(wavelen_match=bplist[0].wavelen)
ss.flambdaTofnu()
mags = -2.5 * numpy.log10(numpy.sum(phiArray * ss.fnu, axis=1) * waveLenStep) - ss.zp
self.assertTrue(len(mags) == len(testMags))
self.assertTrue(len(mags) > 0)
for j in range(len(mags)):
self.assertAlmostEqual(mags[j], testMags[j], 10)
示例3: calcMagNorm
# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import resampleSED [as 别名]
def calcMagNorm(self, objectMags, sedObj, bandpassDict, mag_error = None,
redshift = None, filtRange = None):
"""
This will find the magNorm value that gives the closest match to the magnitudes of the object
using the matched SED. Uses scipy.optimize.leastsq to find the values of fluxNorm that minimizes
the function: ((flux_obs - (fluxNorm*flux_model))/flux_error)**2.
@param [in] objectMags are the magnitude values for the object with extinction matching that of
the SED object. In the normal case using the selectSED routines above it will be dereddened mags.
@param [in] sedObj is an Sed class instance that is set with the wavelength and flux of the
matched SED
@param [in] bandpassDict is a BandpassDict class instance with the Bandpasses set to those
for the magnitudes given for the catalog object
@param [in] mag_error are provided error values for magnitudes in objectMags. If none provided
then this defaults to 1.0. This should be an array of the same length as objectMags.
@param [in] redshift is the redshift of the object if the magnitude is observed
@param [in] filtRange is a selected range of filters specified by their indices in the bandpassList
to match up against. Used when missing data in some magnitude bands.
@param [out] bestMagNorm is the magnitude normalization for the given magnitudes and SED
"""
import scipy.optimize as opt
sedTest = Sed()
sedTest.setSED(sedObj.wavelen, flambda = sedObj.flambda)
if redshift is not None:
sedTest.redshiftSED(redshift)
imSimBand = Bandpass()
imSimBand.imsimBandpass()
zp = -2.5*np.log10(3631) #Note using default AB zeropoint
flux_obs = np.power(10,(objectMags + zp)/(-2.5))
sedTest.resampleSED(wavelen_match=bandpassDict.values()[0].wavelen)
sedTest.flambdaTofnu()
flux_model = sedTest.manyFluxCalc(bandpassDict.phiArray, bandpassDict.wavelenStep)
if filtRange is not None:
flux_obs = flux_obs[filtRange]
flux_model = flux_model[filtRange]
if mag_error is None:
flux_error = np.ones(len(flux_obs))
else:
flux_error = np.abs(flux_obs*(np.log(10)/(-2.5))*mag_error)
bestFluxNorm = opt.leastsq(lambda x: ((flux_obs - (x*flux_model))/flux_error), 1.0)[0][0]
sedTest.multiplyFluxNorm(bestFluxNorm)
bestMagNorm = sedTest.calcMag(imSimBand)
return bestMagNorm
示例4: testApplyIGM
# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import resampleSED [as 别名]
def testApplyIGM(self):
"""Test application of IGM from Lookup Tables to SED objects"""
# Test that a warning comes up if input redshift is out
# of range and that no changes occurs to SED
testSed = Sed()
sedName = os.path.join(getPackageDir('sims_sed_library'), 'galaxySED')
testSed.readSED_flambda(os.path.join(sedName,
'Burst.10E08.002Z.spec.gz'))
testFlambda = []
for fVal in testSed.flambda:
testFlambda.append(fVal)
testIGM = ApplyIGM()
testIGM.initializeIGM()
with warnings.catch_warnings(record=True) as wa:
testIGM.applyIGM(1.1, testSed)
self.assertEqual(len(wa), 1)
self.assertIn('IGM Lookup tables', str(wa[-1].message))
np.testing.assert_equal(testFlambda, testSed.flambda)
# Test that lookup table is read in correctly
testTable15 = np.genfromtxt(str(getPackageDir('sims_catUtils') +
'/python/lsst/sims/catUtils/IGM/igm_tables/' +
'MeanLookupTable_zSource1.5.tbl.gz'))
np.testing.assert_equal(testTable15, testIGM.meanLookups['1.5'])
# Test output by making sure that an incoming sed
# with flambda = 1.0 everywhere will return the
# transmission values of the lookup table as its
# flambda output
testSed.setSED(testSed.wavelen, flambda=np.ones(len(testSed.wavelen)))
testIGM.applyIGM(1.5, testSed)
testTable15Above300 = testTable15[np.where(testTable15[:, 0] >= 300.0)]
testSed.resampleSED(wavelen_match = testTable15Above300[:, 0])
np.testing.assert_allclose(testTable15Above300[:, 1],
testSed.flambda, 1e-4)
示例5: testAlternateBandpassesGalaxies
# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import resampleSED [as 别名]
def testAlternateBandpassesGalaxies(self):
"""
the same as testAlternateBandpassesStars, but for galaxies
"""
obs_metadata_pointed = ObservationMetaData(mjd=50000.0,
boundType='circle',
pointingRA=0.0, pointingDec=0.0,
boundLength=10.0)
dtype = np.dtype([('galid', np.int),
('ra', np.float),
('dec', np.float),
('uTotal', np.float),
('gTotal', np.float),
('rTotal', np.float),
('iTotal', np.float),
('zTotal', np.float),
('uBulge', np.float),
('gBulge', np.float),
('rBulge', np.float),
('iBulge', np.float),
('zBulge', np.float),
('uDisk', np.float),
('gDisk', np.float),
('rDisk', np.float),
('iDisk', np.float),
('zDisk', np.float),
('uAgn', np.float),
('gAgn', np.float),
('rAgn', np.float),
('iAgn', np.float),
('zAgn', np.float),
('bulgeName', str, 200),
('bulgeNorm', np.float),
('bulgeAv', np.float),
('diskName', str, 200),
('diskNorm', np.float),
('diskAv', np.float),
('agnName', str, 200),
('agnNorm', np.float),
('redshift', np.float)])
test_cat = cartoonGalaxies(self.galaxy, obs_metadata=obs_metadata_pointed)
with lsst.utils.tests.getTempFilePath('.txt') as catName:
test_cat.write_catalog(catName)
catData = np.genfromtxt(catName, dtype=dtype, delimiter=', ')
self.assertGreater(len(catData), 0)
cartoonDir = getPackageDir('sims_photUtils')
cartoonDir = os.path.join(cartoonDir, 'tests', 'cartoonSedTestData')
sedDir = getPackageDir('sims_sed_library')
testBandpasses = {}
keys = ['u', 'g', 'r', 'i', 'z']
for kk in keys:
testBandpasses[kk] = Bandpass()
testBandpasses[kk].readThroughput(os.path.join(cartoonDir, "test_bandpass_%s.dat" % kk))
imsimBand = Bandpass()
imsimBand.imsimBandpass()
specMap = defaultSpecMap
ct = 0
for line in catData:
bulgeMagList = []
diskMagList = []
agnMagList = []
if line['bulgeName'] == 'None':
for bp in keys:
np.testing.assert_equal(line['%sBulge' % bp], np.NaN)
bulgeMagList.append(np.NaN)
else:
ct += 1
dummySed = Sed()
dummySed.readSED_flambda(os.path.join(sedDir, specMap[line['bulgeName']]))
fnorm = dummySed.calcFluxNorm(line['bulgeNorm'], imsimBand)
dummySed.multiplyFluxNorm(fnorm)
a_int, b_int = dummySed.setupCCM_ab()
dummySed.addDust(a_int, b_int, A_v=line['bulgeAv'])
dummySed.redshiftSED(line['redshift'], dimming=True)
dummySed.resampleSED(wavelen_match=testBandpasses['u'].wavelen)
for bpName in keys:
mag = dummySed.calcMag(testBandpasses[bpName])
self.assertAlmostEqual(mag, line['%sBulge' % bpName], 10)
bulgeMagList.append(mag)
if line['diskName'] == 'None':
for bp in keys:
np.assert_equal(line['%sDisk' % bp], np.NaN)
diskMagList.append(np.NaN)
else:
ct += 1
dummySed = Sed()
dummySed.readSED_flambda(os.path.join(sedDir, specMap[line['diskName']]))
fnorm = dummySed.calcFluxNorm(line['diskNorm'], imsimBand)
dummySed.multiplyFluxNorm(fnorm)
#.........这里部分代码省略.........
示例6: applyIGM
# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import resampleSED [as 别名]
def applyIGM(self, redshift, sedobj):
"""
Apply IGM extinction to already redshifted sed with redshift
between zMin and zMax defined by range of lookup tables
@param [in] redshift is the redshift of the incoming SED object
@param [in] sedobj is the SED object to which IGM extinction will be applied. This object
will be modified as a result of this.
"""
if self.IGMisInitialized == False:
self.initializeIGM()
# First make sure redshift is in range of lookup tables.
if (redshift < self.zMin) or (redshift > self.zMax):
warnings.warn(
str(
"IGM Lookup tables only applicable for "
+ str(self.zMin)
+ " < z < "
+ str(self.zMax)
+ ". No action taken"
)
)
return
# Now read in closest two lookup tables for given redshift
lowerSed = Sed()
upperSed = Sed()
for lower, upper in zip(self.zRange[:-1], self.zRange[1:]):
if lower <= redshift <= upper:
lowerSed.setSED(self.meanLookups[str(lower)][:, 0], flambda=self.meanLookups[str(lower)][:, 1])
upperSed.setSED(self.meanLookups[str(upper)][:, 0], flambda=self.meanLookups[str(upper)][:, 1])
break
# Redshift lookup tables to redshift of source, i.e. if source redshift is 1.78 shift lookup
# table for 1.7 and lookup table for 1.8 to up and down to 1.78, respectively
zLowerShift = ((1.0 + redshift) / (1.0 + lower)) - 1.0
zUpperShift = ((1.0 + redshift) / (1.0 + upper)) - 1.0
lowerSed.redshiftSED(zLowerShift)
upperSed.redshiftSED(zUpperShift)
# Resample lower and upper transmission data onto same wavelength grid.
minWavelen = 300.0 # All lookup tables are usable above 300nm
maxWavelen = np.amin([lowerSed.wavelen[-1], upperSed.wavelen[-1]]) - 0.01
lowerSed.resampleSED(wavelen_min=minWavelen, wavelen_max=maxWavelen, wavelen_step=0.01)
upperSed.resampleSED(wavelen_match=lowerSed.wavelen)
# Now insert this into a transmission array of 1.0 beyond the limits of current application
# So that we can get an sed back that extends to the longest wavelengths of the incoming sed
finalWavelen = np.arange(300.0, sedobj.wavelen[-1] + 0.01, 0.01)
finalFlambdaExtended = np.ones(len(finalWavelen))
# Weighted Average of Transmission from each lookup table to get final transmission
# table at desired redshift
dzGrid = self.zDelta # Step in redshift between transmission lookup table files
finalSed = Sed()
finalFlambda = lowerSed.flambda * (1.0 - ((redshift - lower) / dzGrid)) + upperSed.flambda * (
1.0 - ((upper - redshift) / dzGrid)
)
finalFlambdaExtended[0 : len(finalFlambda)] = finalFlambda
finalSed.setSED(wavelen=finalWavelen, flambda=finalFlambdaExtended)
# Resample incoming sed to new grid so that we don't get warnings from multiplySED
# about matching wavelength grids
sedobj.resampleSED(wavelen_match=finalSed.wavelen)
# Now multiply transmission curve by input SED to get final result and make it the new flambda
# data in the original sed which also is now on a new grid starting at 300 nm
test = sedobj.multiplySED(finalSed)
sedobj.flambda = test.flambda