当前位置: 首页>>代码示例>>Python>>正文


Python Sed.flambdaTofnu方法代码示例

本文整理汇总了Python中lsst.sims.photUtils.Sed.Sed.flambdaTofnu方法的典型用法代码示例。如果您正苦于以下问题:Python Sed.flambdaTofnu方法的具体用法?Python Sed.flambdaTofnu怎么用?Python Sed.flambdaTofnu使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lsst.sims.photUtils.Sed.Sed的用法示例。


在下文中一共展示了Sed.flambdaTofnu方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testAlternateBandpassesStars

# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import flambdaTofnu [as 别名]
    def testAlternateBandpassesStars(self):
        """
        This will test our ability to do photometry using non-LSST bandpasses.

        It will first calculate the magnitudes using the getters in cartoonPhotometryStars.

        It will then load the alternate bandpass files 'by hand' and re-calculate the magnitudes
        and make sure that the magnitude values agree.  This is guarding against the possibility
        that some default value did not change and the code actually ended up loading the
        LSST bandpasses.
        """

        obs_metadata_pointed = ObservationMetaData(
            mjd=2013.23, boundType="circle", unrefractedRA=200.0, unrefractedDec=-30.0, boundLength=1.0
        )

        bandpassDir = os.path.join(lsst.utils.getPackageDir("sims_photUtils"), "tests", "cartoonSedTestData")

        cartoon_dict = BandpassDict.loadTotalBandpassesFromFiles(
            ["u", "g", "r", "i", "z"], bandpassDir=bandpassDir, bandpassRoot="test_bandpass_"
        )

        testBandPasses = {}
        keys = ["u", "g", "r", "i", "z"]

        bplist = []

        for kk in keys:
            testBandPasses[kk] = Bandpass()
            testBandPasses[kk].readThroughput(os.path.join(bandpassDir, "test_bandpass_%s.dat" % kk))
            bplist.append(testBandPasses[kk])

        sedObj = Sed()
        phiArray, waveLenStep = sedObj.setupPhiArray(bplist)

        sedFileName = os.path.join(lsst.utils.getPackageDir("sims_sed_library"), "starSED", "kurucz")
        sedFileName = os.path.join(sedFileName, "km20_5750.fits_g40_5790.gz")
        ss = Sed()
        ss.readSED_flambda(sedFileName)

        controlBandpass = Bandpass()
        controlBandpass.imsimBandpass()
        ff = ss.calcFluxNorm(22.0, controlBandpass)
        ss.multiplyFluxNorm(ff)

        testMags = cartoon_dict.magListForSed(ss)

        ss.resampleSED(wavelen_match=bplist[0].wavelen)
        ss.flambdaTofnu()
        mags = -2.5 * numpy.log10(numpy.sum(phiArray * ss.fnu, axis=1) * waveLenStep) - ss.zp
        self.assertTrue(len(mags) == len(testMags))
        self.assertTrue(len(mags) > 0)
        for j in range(len(mags)):
            self.assertAlmostEqual(mags[j], testMags[j], 10)
开发者ID:mpwiesner,项目名称:sims_photUtils,代码行数:56,代码来源:testPhotometry.py

示例2: calcMagNorm

# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import flambdaTofnu [as 别名]
    def calcMagNorm(self, objectMags, sedObj, bandpassDict, mag_error = None,
                    redshift = None, filtRange = None):

        """
        This will find the magNorm value that gives the closest match to the magnitudes of the object
        using the matched SED. Uses scipy.optimize.leastsq to find the values of fluxNorm that minimizes
        the function: ((flux_obs - (fluxNorm*flux_model))/flux_error)**2.

        @param [in] objectMags are the magnitude values for the object with extinction matching that of
        the SED object. In the normal case using the selectSED routines above it will be dereddened mags.

        @param [in] sedObj is an Sed class instance that is set with the wavelength and flux of the
        matched SED

        @param [in] bandpassDict is a BandpassDict class instance with the Bandpasses set to those
        for the magnitudes given for the catalog object

        @param [in] mag_error are provided error values for magnitudes in objectMags. If none provided
        then this defaults to 1.0. This should be an array of the same length as objectMags.

        @param [in] redshift is the redshift of the object if the magnitude is observed

        @param [in] filtRange is a selected range of filters specified by their indices in the bandpassList
        to match up against. Used when missing data in some magnitude bands.

        @param [out] bestMagNorm is the magnitude normalization for the given magnitudes and SED
        """

        import scipy.optimize as opt

        sedTest = Sed()
        sedTest.setSED(sedObj.wavelen, flambda = sedObj.flambda)
        if redshift is not None:
            sedTest.redshiftSED(redshift)
        imSimBand = Bandpass()
        imSimBand.imsimBandpass()
        zp = -2.5*np.log10(3631)  #Note using default AB zeropoint
        flux_obs = np.power(10,(objectMags + zp)/(-2.5))
        sedTest.resampleSED(wavelen_match=bandpassDict.values()[0].wavelen)
        sedTest.flambdaTofnu()
        flux_model = sedTest.manyFluxCalc(bandpassDict.phiArray, bandpassDict.wavelenStep)
        if filtRange is not None:
            flux_obs = flux_obs[filtRange]
            flux_model = flux_model[filtRange]
        if mag_error is None:
            flux_error = np.ones(len(flux_obs))
        else:
            flux_error = np.abs(flux_obs*(np.log(10)/(-2.5))*mag_error)
        bestFluxNorm = opt.leastsq(lambda x: ((flux_obs - (x*flux_model))/flux_error), 1.0)[0][0]
        sedTest.multiplyFluxNorm(bestFluxNorm)
        bestMagNorm = sedTest.calcMag(imSimBand)
        return bestMagNorm
开发者ID:mpwiesner,项目名称:sims_photUtils,代码行数:54,代码来源:matchUtils.py


注:本文中的lsst.sims.photUtils.Sed.Sed.flambdaTofnu方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。