本文整理汇总了Python中lsst.sims.photUtils.Sed.Sed.redshiftSED方法的典型用法代码示例。如果您正苦于以下问题:Python Sed.redshiftSED方法的具体用法?Python Sed.redshiftSED怎么用?Python Sed.redshiftSED使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类lsst.sims.photUtils.Sed.Sed
的用法示例。
在下文中一共展示了Sed.redshiftSED方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: calcMagNorm
# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import redshiftSED [as 别名]
def calcMagNorm(self, objectMags, sedObj, bandpassDict, mag_error = None,
redshift = None, filtRange = None):
"""
This will find the magNorm value that gives the closest match to the magnitudes of the object
using the matched SED. Uses scipy.optimize.leastsq to find the values of fluxNorm that minimizes
the function: ((flux_obs - (fluxNorm*flux_model))/flux_error)**2.
@param [in] objectMags are the magnitude values for the object with extinction matching that of
the SED object. In the normal case using the selectSED routines above it will be dereddened mags.
@param [in] sedObj is an Sed class instance that is set with the wavelength and flux of the
matched SED
@param [in] bandpassDict is a BandpassDict class instance with the Bandpasses set to those
for the magnitudes given for the catalog object
@param [in] mag_error are provided error values for magnitudes in objectMags. If none provided
then this defaults to 1.0. This should be an array of the same length as objectMags.
@param [in] redshift is the redshift of the object if the magnitude is observed
@param [in] filtRange is a selected range of filters specified by their indices in the bandpassList
to match up against. Used when missing data in some magnitude bands.
@param [out] bestMagNorm is the magnitude normalization for the given magnitudes and SED
"""
import scipy.optimize as opt
sedTest = Sed()
sedTest.setSED(sedObj.wavelen, flambda = sedObj.flambda)
if redshift is not None:
sedTest.redshiftSED(redshift)
imSimBand = Bandpass()
imSimBand.imsimBandpass()
zp = -2.5*np.log10(3631) #Note using default AB zeropoint
flux_obs = np.power(10,(objectMags + zp)/(-2.5))
sedTest.resampleSED(wavelen_match=bandpassDict.values()[0].wavelen)
sedTest.flambdaTofnu()
flux_model = sedTest.manyFluxCalc(bandpassDict.phiArray, bandpassDict.wavelenStep)
if filtRange is not None:
flux_obs = flux_obs[filtRange]
flux_model = flux_model[filtRange]
if mag_error is None:
flux_error = np.ones(len(flux_obs))
else:
flux_error = np.abs(flux_obs*(np.log(10)/(-2.5))*mag_error)
bestFluxNorm = opt.leastsq(lambda x: ((flux_obs - (x*flux_model))/flux_error), 1.0)[0][0]
sedTest.multiplyFluxNorm(bestFluxNorm)
bestMagNorm = sedTest.calcMag(imSimBand)
return bestMagNorm
示例2: testCalcMagNorm
# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import redshiftSED [as 别名]
def testCalcMagNorm(self):
"""Tests the calculation of magnitude normalization for an SED with the given magnitudes
in the given bandpasses."""
testUtils = matchBase()
bandpassDir = os.path.join(lsst.utils.getPackageDir('throughputs'), 'sdss')
testPhot = BandpassDict.loadTotalBandpassesFromFiles(self.filterList,
bandpassDir = bandpassDir,
bandpassRoot = 'sdss_')
unChangedSED = Sed()
unChangedSED.readSED_flambda(str(self.galDir + os.listdir(self.galDir)[0]))
imSimBand = Bandpass()
imSimBand.imsimBandpass()
testSED = Sed()
testSED.setSED(unChangedSED.wavelen, flambda = unChangedSED.flambda)
magNorm = 20.0
redVal = 0.1
testSED.redshiftSED(redVal)
fluxNorm = testSED.calcFluxNorm(magNorm, imSimBand)
testSED.multiplyFluxNorm(fluxNorm)
sedMags = testPhot.magListForSed(testSED)
stepSize = 0.001
testMagNorm = testUtils.calcMagNorm(sedMags, unChangedSED, testPhot, redshift = redVal)
# Test adding in mag_errors. If an array of np.ones is passed in we should get same result
testMagNormWithErr = testUtils.calcMagNorm(sedMags, unChangedSED, testPhot,
mag_error = np.ones(len(sedMags)), redshift = redVal)
# Also need to add in test for filtRange
sedMagsIncomp = sedMags
sedMagsIncomp[1] = None
filtRangeTest = [0, 2, 3, 4]
testMagNormFiltRange = testUtils.calcMagNorm(sedMagsIncomp, unChangedSED, testPhot,
redshift = redVal, filtRange = filtRangeTest)
self.assertAlmostEqual(magNorm, testMagNorm, delta = stepSize)
self.assertAlmostEqual(magNorm, testMagNormWithErr, delta = stepSize)
self.assertAlmostEqual(magNorm, testMagNormFiltRange, delta = stepSize)
示例3: matchToObserved
# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import redshiftSED [as 别名]
#.........这里部分代码省略.........
@param [out] magNormMatches are the magnitude normalizations for the given magnitudes and
matched SED.
@param [out] matchErrors contains the Mean Squared Error between the colors of each object and
the colors of the matched SED.
"""
#Set up photometry to calculate model Mags
if bandpassDict is None:
galPhot = BandpassDict.loadTotalBandpassesFromFiles(['u','g','r','i','z'],
bandpassDir = os.path.join(lsst.utils.getPackageDir('throughputs'),'sdss'),
bandpassRoot = 'sdss_')
else:
galPhot = bandpassDict
#Calculate ebv from ra, dec coordinates if needed
if reddening == True:
#Check that catRA and catDec are included
if catRA is None or catDec is None:
raise RuntimeError("Reddening is True, but catRA and catDec are not included.")
calcEBV = ebv()
raDec = np.array((catRA,catDec))
#If only matching one object need to reshape for calculateEbv
if len(raDec.shape) == 1:
raDec = raDec.reshape((2,1))
ebvVals = calcEBV.calculateEbv(equatorialCoordinates = raDec)
objMags = self.deReddenMags(ebvVals, catMags, extCoeffs)
else:
objMags = catMags
minRedshift = np.round(np.min(catRedshifts), dzAcc)
maxRedshift = np.round(np.max(catRedshifts), dzAcc)
dz = np.power(10., (-1*dzAcc))
redshiftRange = np.round(np.arange(minRedshift - dz, maxRedshift + (2*dz), dz), dzAcc)
numRedshifted = 0
sedMatches = [None] * len(catRedshifts)
magNormMatches = [None] * len(catRedshifts)
matchErrors = [None] * len(catRedshifts)
redshiftIndex = np.argsort(catRedshifts)
numOn = 0
notMatched = 0
lastRedshift = -100
print 'Starting Matching. Arranged by redshift value.'
for redshift in redshiftRange:
if numRedshifted % 10 == 0:
print '%i out of %i redshifts gone through' % (numRedshifted, len(redshiftRange))
numRedshifted += 1
colorSet = []
for galSpec in sedList:
sedColors = []
fileSED = Sed()
fileSED.setSED(wavelen = galSpec.wavelen, flambda = galSpec.flambda)
fileSED.redshiftSED(redshift)
sedColors = self.calcBasicColors([fileSED], galPhot, makeCopy = True)
colorSet.append(sedColors)
colorSet = np.transpose(colorSet)
for currentIndex in redshiftIndex[numOn:]:
matchMags = objMags[currentIndex]
if lastRedshift < np.round(catRedshifts[currentIndex],dzAcc) <= redshift:
colorRange = np.arange(0, len(galPhot)-1)
matchColors = []
for colorNum in colorRange:
matchColors.append(matchMags[colorNum] - matchMags[colorNum+1])
#This is done to handle objects with incomplete magnitude data
filtNums = np.arange(0, len(galPhot))
if np.isnan(np.amin(matchColors))==True:
colorRange = np.where(np.isnan(matchColors)==False)[0]
filtNums = np.unique([colorRange, colorRange+1]) #Pick right filters in calcMagNorm
if len(colorRange) == 0:
print 'Could not match object #%i. No magnitudes for two adjacent bandpasses.' \
% (currentIndex)
notMatched += 1
#Don't need to assign 'None' here in result array, b/c 'None' is default value
else:
distanceArray = [np.zeros(len(sedList))]
for colorNum in colorRange:
distanceArray += np.power((colorSet[colorNum] - matchColors[colorNum]),2)
matchedSEDNum = np.nanargmin(distanceArray)
sedMatches[currentIndex] = sedList[matchedSEDNum].name
magNormVal = self.calcMagNorm(np.array(matchMags), sedList[matchedSEDNum],
galPhot, mag_error = mag_error,
redshift = catRedshifts[currentIndex],
filtRange = filtNums)
magNormMatches[currentIndex] = magNormVal
matchErrors[currentIndex] = (distanceArray[0,matchedSEDNum]/len(colorRange))
numOn += 1
else:
break
lastRedshift = redshift
print 'Done Matching. Matched %i of %i catalog objects to SEDs' % (len(catMags)-notMatched,
len(catMags))
if notMatched > 0:
print '%i objects did not get matched.' % (notMatched)
return sedMatches, magNormMatches, matchErrors
示例4: testAlternateBandpassesGalaxies
# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import redshiftSED [as 别名]
def testAlternateBandpassesGalaxies(self):
"""
the same as testAlternateBandpassesStars, but for galaxies
"""
obs_metadata_pointed = ObservationMetaData(mjd=50000.0,
boundType='circle',
pointingRA=0.0, pointingDec=0.0,
boundLength=10.0)
dtype = np.dtype([('galid', np.int),
('ra', np.float),
('dec', np.float),
('uTotal', np.float),
('gTotal', np.float),
('rTotal', np.float),
('iTotal', np.float),
('zTotal', np.float),
('uBulge', np.float),
('gBulge', np.float),
('rBulge', np.float),
('iBulge', np.float),
('zBulge', np.float),
('uDisk', np.float),
('gDisk', np.float),
('rDisk', np.float),
('iDisk', np.float),
('zDisk', np.float),
('uAgn', np.float),
('gAgn', np.float),
('rAgn', np.float),
('iAgn', np.float),
('zAgn', np.float),
('bulgeName', str, 200),
('bulgeNorm', np.float),
('bulgeAv', np.float),
('diskName', str, 200),
('diskNorm', np.float),
('diskAv', np.float),
('agnName', str, 200),
('agnNorm', np.float),
('redshift', np.float)])
test_cat = cartoonGalaxies(self.galaxy, obs_metadata=obs_metadata_pointed)
with lsst.utils.tests.getTempFilePath('.txt') as catName:
test_cat.write_catalog(catName)
catData = np.genfromtxt(catName, dtype=dtype, delimiter=', ')
self.assertGreater(len(catData), 0)
cartoonDir = getPackageDir('sims_photUtils')
cartoonDir = os.path.join(cartoonDir, 'tests', 'cartoonSedTestData')
sedDir = getPackageDir('sims_sed_library')
testBandpasses = {}
keys = ['u', 'g', 'r', 'i', 'z']
for kk in keys:
testBandpasses[kk] = Bandpass()
testBandpasses[kk].readThroughput(os.path.join(cartoonDir, "test_bandpass_%s.dat" % kk))
imsimBand = Bandpass()
imsimBand.imsimBandpass()
specMap = defaultSpecMap
ct = 0
for line in catData:
bulgeMagList = []
diskMagList = []
agnMagList = []
if line['bulgeName'] == 'None':
for bp in keys:
np.testing.assert_equal(line['%sBulge' % bp], np.NaN)
bulgeMagList.append(np.NaN)
else:
ct += 1
dummySed = Sed()
dummySed.readSED_flambda(os.path.join(sedDir, specMap[line['bulgeName']]))
fnorm = dummySed.calcFluxNorm(line['bulgeNorm'], imsimBand)
dummySed.multiplyFluxNorm(fnorm)
a_int, b_int = dummySed.setupCCM_ab()
dummySed.addDust(a_int, b_int, A_v=line['bulgeAv'])
dummySed.redshiftSED(line['redshift'], dimming=True)
dummySed.resampleSED(wavelen_match=testBandpasses['u'].wavelen)
for bpName in keys:
mag = dummySed.calcMag(testBandpasses[bpName])
self.assertAlmostEqual(mag, line['%sBulge' % bpName], 10)
bulgeMagList.append(mag)
if line['diskName'] == 'None':
for bp in keys:
np.assert_equal(line['%sDisk' % bp], np.NaN)
diskMagList.append(np.NaN)
else:
ct += 1
dummySed = Sed()
dummySed.readSED_flambda(os.path.join(sedDir, specMap[line['diskName']]))
fnorm = dummySed.calcFluxNorm(line['diskNorm'], imsimBand)
dummySed.multiplyFluxNorm(fnorm)
#.........这里部分代码省略.........
示例5: testMatchToObserved
# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import redshiftSED [as 别名]
def testMatchToObserved(self):
"""Test that Galaxy SEDs with extinction or redshift are matched correctly"""
np.random.seed(42)
galPhot = BandpassDict.loadTotalBandpassesFromFiles()
imSimBand = Bandpass()
imSimBand.imsimBandpass()
testMatching = selectGalaxySED(galDir = self.testSpecDir)
testSEDList = testMatching.loadBC03()
testSEDNames = []
testRA = []
testDec = []
testRedshifts = []
testMagNormList = []
magNormStep = 1
extCoeffs = [1.8140, 1.4166, 0.9947, 0.7370, 0.5790, 0.4761]
testMags = []
testMagsRedshift = []
testMagsExt = []
for testSED in testSEDList:
#As a check make sure that it matches when no extinction and no redshift are present
getSEDMags = Sed()
testSEDNames.append(testSED.name)
getSEDMags.setSED(wavelen = testSED.wavelen, flambda = testSED.flambda)
testMags.append(galPhot.magListForSed(getSEDMags))
#Check Extinction corrections
sedRA = np.random.uniform(10,170)
sedDec = np.random.uniform(10,80)
testRA.append(sedRA)
testDec.append(sedDec)
raDec = np.array((sedRA, sedDec)).reshape((2,1))
ebvVal = ebv().calculateEbv(equatorialCoordinates = raDec)
extVal = ebvVal*extCoeffs
testMagsExt.append(galPhot.magListForSed(getSEDMags) + extVal)
#Setup magnitudes for testing matching to redshifted values
getRedshiftMags = Sed()
testZ = np.round(np.random.uniform(1.1,1.3),3)
testRedshifts.append(testZ)
testMagNorm = np.round(np.random.uniform(20.0,22.0),magNormStep)
testMagNormList.append(testMagNorm)
getRedshiftMags.setSED(wavelen = testSED.wavelen, flambda = testSED.flambda)
getRedshiftMags.redshiftSED(testZ)
fluxNorm = getRedshiftMags.calcFluxNorm(testMagNorm, imSimBand)
getRedshiftMags.multiplyFluxNorm(fluxNorm)
testMagsRedshift.append(galPhot.magListForSed(getRedshiftMags))
#Will also test in passing of non-default bandpass
testNoExtNoRedshift = testMatching.matchToObserved(testSEDList, testMags, np.zeros(20),
reddening = False,
bandpassDict = galPhot)
testMatchingEbvVals = testMatching.matchToObserved(testSEDList, testMagsExt, np.zeros(20),
catRA = testRA, catDec = testDec,
reddening = True, extCoeffs = extCoeffs,
bandpassDict = galPhot)
#Substitute in nan values to simulate incomplete data and make sure magnorm works too.
testMagsRedshift[0][1] = np.nan
testMagsRedshift[0][3] = np.nan
testMagsRedshift[0][4] = np.nan
testMagsRedshift[1][1] = np.nan
testMatchingRedshift = testMatching.matchToObserved(testSEDList, testMagsRedshift, testRedshifts,
dzAcc = 3, reddening = False,
bandpassDict = galPhot)
self.assertEqual(testSEDNames, testNoExtNoRedshift[0])
self.assertEqual(testSEDNames, testMatchingEbvVals[0])
self.assertEqual(None, testMatchingRedshift[0][0])
self.assertEqual(testSEDNames[1:], testMatchingRedshift[0][1:])
self.assertEqual(None, testMatchingRedshift[1][0])
np.testing.assert_almost_equal(testMagNormList[1:], testMatchingRedshift[1][1:],
decimal = magNormStep)
#Test Match Errors
errMag = testMagsRedshift[2]
errRedshift = testRedshifts[2]
errMags = np.array((errMag, errMag, errMag, errMag))
errRedshifts = np.array((errRedshift, errRedshift, errRedshift, errRedshift))
errMags[1,1] += 1. #Total MSE will be 2/(5 colors) = 0.4
errMags[2, 0:2] = np.nan
errMags[2, 3] += 1. #Total MSE will be 2/(3 colors) = 0.667
errMags[3, :] = None
errSED = testSEDList[2]
testMatchingResultsErrors = testMatching.matchToObserved([errSED], errMags, errRedshifts,
reddening = False,
bandpassDict = galPhot,
dzAcc = 3)
np.testing.assert_almost_equal(np.array((0.0, 0.4, 2./3.)), testMatchingResultsErrors[2][0:3],
decimal = 2) #Give a little more leeway due to redshifting effects
self.assertEqual(None, testMatchingResultsErrors[2][3])
示例6: applyIGM
# 需要导入模块: from lsst.sims.photUtils.Sed import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed.Sed import redshiftSED [as 别名]
def applyIGM(self, redshift, sedobj):
"""
Apply IGM extinction to already redshifted sed with redshift
between zMin and zMax defined by range of lookup tables
@param [in] redshift is the redshift of the incoming SED object
@param [in] sedobj is the SED object to which IGM extinction will be applied. This object
will be modified as a result of this.
"""
if self.IGMisInitialized == False:
self.initializeIGM()
# First make sure redshift is in range of lookup tables.
if (redshift < self.zMin) or (redshift > self.zMax):
warnings.warn(
str(
"IGM Lookup tables only applicable for "
+ str(self.zMin)
+ " < z < "
+ str(self.zMax)
+ ". No action taken"
)
)
return
# Now read in closest two lookup tables for given redshift
lowerSed = Sed()
upperSed = Sed()
for lower, upper in zip(self.zRange[:-1], self.zRange[1:]):
if lower <= redshift <= upper:
lowerSed.setSED(self.meanLookups[str(lower)][:, 0], flambda=self.meanLookups[str(lower)][:, 1])
upperSed.setSED(self.meanLookups[str(upper)][:, 0], flambda=self.meanLookups[str(upper)][:, 1])
break
# Redshift lookup tables to redshift of source, i.e. if source redshift is 1.78 shift lookup
# table for 1.7 and lookup table for 1.8 to up and down to 1.78, respectively
zLowerShift = ((1.0 + redshift) / (1.0 + lower)) - 1.0
zUpperShift = ((1.0 + redshift) / (1.0 + upper)) - 1.0
lowerSed.redshiftSED(zLowerShift)
upperSed.redshiftSED(zUpperShift)
# Resample lower and upper transmission data onto same wavelength grid.
minWavelen = 300.0 # All lookup tables are usable above 300nm
maxWavelen = np.amin([lowerSed.wavelen[-1], upperSed.wavelen[-1]]) - 0.01
lowerSed.resampleSED(wavelen_min=minWavelen, wavelen_max=maxWavelen, wavelen_step=0.01)
upperSed.resampleSED(wavelen_match=lowerSed.wavelen)
# Now insert this into a transmission array of 1.0 beyond the limits of current application
# So that we can get an sed back that extends to the longest wavelengths of the incoming sed
finalWavelen = np.arange(300.0, sedobj.wavelen[-1] + 0.01, 0.01)
finalFlambdaExtended = np.ones(len(finalWavelen))
# Weighted Average of Transmission from each lookup table to get final transmission
# table at desired redshift
dzGrid = self.zDelta # Step in redshift between transmission lookup table files
finalSed = Sed()
finalFlambda = lowerSed.flambda * (1.0 - ((redshift - lower) / dzGrid)) + upperSed.flambda * (
1.0 - ((upper - redshift) / dzGrid)
)
finalFlambdaExtended[0 : len(finalFlambda)] = finalFlambda
finalSed.setSED(wavelen=finalWavelen, flambda=finalFlambdaExtended)
# Resample incoming sed to new grid so that we don't get warnings from multiplySED
# about matching wavelength grids
sedobj.resampleSED(wavelen_match=finalSed.wavelen)
# Now multiply transmission curve by input SED to get final result and make it the new flambda
# data in the original sed which also is now on a new grid starting at 300 nm
test = sedobj.multiplySED(finalSed)
sedobj.flambda = test.flambda