当前位置: 首页>>代码示例>>Python>>正文


Python Sed.setupCCM_ab方法代码示例

本文整理汇总了Python中lsst.sims.photUtils.Sed.setupCCM_ab方法的典型用法代码示例。如果您正苦于以下问题:Python Sed.setupCCM_ab方法的具体用法?Python Sed.setupCCM_ab怎么用?Python Sed.setupCCM_ab使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lsst.sims.photUtils.Sed的用法示例。


在下文中一共展示了Sed.setupCCM_ab方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: calcADUwrapper

# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import setupCCM_ab [as 别名]
def calcADUwrapper(sedName=None, magNorm=None, redshift=None, internalAv=None, internalRv=None,
                   galacticAv=None, galacticRv=None, bandpass=None):
    """
    Read in an SED and calculat the number of ADU produced by that SED in a specified bandpass

    Parameters
    ----------
    sedName is a string specifying the file name of the SED

    magNorm is the normalizing magnitude of the SED in the imsimBandpass

    redshift is the redshift of the SED

    internalAv is the Av due to internal dust of the source (if a galaxy)

    internalRv is the Rv due to internal dust of the source (if a galaxy)

    galacticAv is the Av due to Milky Way dust between observer and source

    galacticRv is the Rv due to Milky Way dust between observer and source

    bandpass is an intantiation of Bandpass representing the band in which the ADUs are measured

    Returns
    -------
    A float representing the number of ADUs measured in the bandpass
    """

    imsimband = Bandpass()
    imsimband.imsimBandpass()
    sed = Sed()
    sed.readSED_flambda(sedName)
    fNorm = sed.calcFluxNorm(magNorm, imsimband)
    sed.multiplyFluxNorm(fNorm)
    if internalAv is not None and internalRv is not None:
        if internalAv != 0.0 and internalRv != 0.0:
            a_int, b_int = sed.setupCCM_ab()
            sed.addDust(a_int, b_int, A_v=internalAv, R_v=internalRv)

    if redshift is not None and redshift != 0.0:
        sed.redshiftSED(redshift, dimming=True)

    a_int, b_int = sed.setupCCM_ab()
    sed.addDust(a_int, b_int, A_v=galacticAv, R_v=galacticRv)

    adu = sed.calcADU(bandpass, photParams=PhotometricParameters())

    return adu
开发者ID:lsst,项目名称:sims_catUtils,代码行数:50,代码来源:testUtils.py

示例2: test_stars

# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import setupCCM_ab [as 别名]
    def test_stars(self):
        obs = ObservationMetaData(bandpassName=['c_u', 'c_g'], m5=[25.0, 26.0])

        db_dtype = np.dtype([('id', np.int),
                             ('raJ2000', np.float),
                             ('decJ2000', np.float),
                             ('sedFilename', str, 100),
                             ('magNorm', np.float),
                             ('galacticAv', np.float)])

        inputDir = os.path.join(getPackageDir('sims_catUtils'), 'tests', 'testData')
        inputFile = os.path.join(inputDir, 'IndicesTestCatalogStars.txt')
        db = fileDBObject(inputFile, dtype=db_dtype, runtable='test', idColKey='id')
        cat = CartoonStars(db, obs_metadata=obs)
        with lsst.utils.tests.getTempFilePath('.txt') as catName:
            cat.write_catalog(catName)
            dtype = np.dtype([(name, np.float) for name in cat.column_outputs])
            controlData = np.genfromtxt(catName, dtype=dtype, delimiter=',')

        db_columns = db.query_columns(['id', 'raJ2000', 'decJ2000', 'sedFilename', 'magNorm', 'galacticAv'])

        sedDir = os.path.join(getPackageDir('sims_sed_library'), 'starSED', 'kurucz')

        for ix, line in enumerate(next(db_columns)):
            spectrum = Sed()
            spectrum.readSED_flambda(os.path.join(sedDir, line[3]))
            fnorm = spectrum.calcFluxNorm(line[4], self.normband)
            spectrum.multiplyFluxNorm(fnorm)
            a_x, b_x = spectrum.setupCCM_ab()
            spectrum.addDust(a_x, b_x, A_v=line[5])
            umag = spectrum.calcMag(self.uband)
            self.assertAlmostEqual(umag, controlData['cartoon_u'][ix], 3)
            gmag = spectrum.calcMag(self.gband)
            self.assertAlmostEqual(gmag, controlData['cartoon_g'][ix], 3)
            umagError, gamma = calcMagError_m5(umag, self.uband, obs.m5['c_u'], PhotometricParameters())
            gmagError, gamma = calcMagError_m5(gmag, self.gband, obs.m5['c_g'], PhotometricParameters())
            self.assertAlmostEqual(umagError, controlData['sigma_cartoon_u'][ix], 3)
            self.assertAlmostEqual(gmagError, controlData['sigma_cartoon_g'][ix], 3)
开发者ID:lsst,项目名称:sims_catUtils,代码行数:40,代码来源:testArbitraryUncertaintyGetters.py

示例3: test_flare_magnitudes_mixed_with_dummy

# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import setupCCM_ab [as 别名]

#.........这里部分代码省略.........
        # milli-mag, our flaring model gives us the magnitudes
        # expected, given the light curves specified in
        # setUpClass()
        for mjd in (59580.0, 60000.0, 70000.0, 80000.0):

            obs = ObservationMetaData(mjd=mjd)

            quiet_cat = QuiescentCatalog(db, obs_metadata=obs)
            quiet_cat.write_catalog(quiet_cat_name)

            flare_cat = FlaringCatalogDummy(db, obs_metadata=obs)
            flare_cat.scratch_dir = self.scratch_dir
            flare_cat._mlt_lc_file = self.mlt_lc_name
            flare_cat.write_catalog(flare_cat_name)

            quiescent_data = np.genfromtxt(quiet_cat_name, dtype=dtype, delimiter=',')
            flaring_data = np.genfromtxt(flare_cat_name, dtype=dtype, delimiter=',')

            self.assertGreater(len(quiescent_data), 2)
            self.assertEqual(len(quiescent_data), len(flaring_data))
            self.assertIn(3, flaring_data['id'])

            for ix in range(len(flaring_data)):
                obj_id = flaring_data['id'][ix]
                self.assertEqual(obj_id, ix)


                msg = ('failed on object %d; mjd %.2f\n u_quiet %e u_flare %e\n g_quiet %e g_flare %e' %
                       (obj_id, mjd, quiescent_data['u'][obj_id], flaring_data['u'][obj_id],
                        quiescent_data['g'][obj_id], flaring_data['g'][obj_id]))

                self.assertEqual(quiescent_data['id'][obj_id], flaring_data['id'][obj_id], msg=msg)
                self.assertAlmostEqual(ss.magFromFlux(baseline_fluxes[obj_id][0]),
                                       quiescent_data['u'][obj_id], 3, msg=msg)
                self.assertAlmostEqual(ss.magFromFlux(baseline_fluxes[obj_id][1]),
                                       quiescent_data['g'][obj_id], 3, msg=msg)
                if obj_id != 3:

                    # the models below are as specified in the
                    # setUpClass() method
                    if obj_id == 0 or obj_id == 1:
                        amp = 1.0e42
                        dt = 3652.5
                        t_min = flare_cat._survey_start - t0_list[obj_id]

                        tt = mjd - t_min
                        while tt > dt:
                            tt -= dt

                        u_flux = amp*(1.0+np.power(np.sin(tt/100.0), 2))
                        g_flux = amp*(1.0+np.power(np.cos(tt/100.0), 2))
                    elif obj_id==2:
                        amp = 2.0e41
                        dt = 365.25
                        t_min = flare_cat._survey_start - t0_list[obj_id]

                        tt = mjd - t_min
                        while tt > dt:
                            tt -= dt
                        u_flux = amp*(1.0+np.power(np.sin(tt/50.0), 2))
                        g_flux = amp*(1.0+np.power(np.cos(tt/50.0), 2))

                    # calculate the multiplicative effect of dust on a 9000K
                    # black body
                    bb_sed = Sed(wavelen=bb_wavelen, flambda=bb_flambda)
                    u_bb_flux = bb_sed.calcFlux(bp_dict['u'])
                    g_bb_flux = bb_sed.calcFlux(bp_dict['g'])
                    a_x, b_x = bb_sed.setupCCM_ab()
                    bb_sed.addDust(a_x, b_x, A_v=av_list[obj_id])
                    u_bb_dusty_flux = bb_sed.calcFlux(bp_dict['u'])
                    g_bb_dusty_flux = bb_sed.calcFlux(bp_dict['g'])

                    dust_u = u_bb_dusty_flux/u_bb_flux
                    dust_g = g_bb_dusty_flux/g_bb_flux

                    area = 4.0*np.pi*np.power(distance_list[obj_id], 2)
                    tot_u_flux = baseline_fluxes[obj_id][0] + u_flux*dust_u/area
                    tot_g_flux = baseline_fluxes[obj_id][1] + g_flux*dust_g/area

                    self.assertAlmostEqual(ss.magFromFlux(tot_u_flux), flaring_data['u'][obj_id],
                                           3, msg=msg)
                    self.assertAlmostEqual(ss.magFromFlux(tot_g_flux), flaring_data['g'][obj_id],
                                           3, msg=msg)

                    self.assertGreater(np.abs(flaring_data['g'][obj_id]-quiescent_data['g'][obj_id]),
                                       0.001, msg=msg)
                    self.assertGreater(np.abs(flaring_data['u'][obj_id]-quiescent_data['u'][obj_id]),
                                       0.001, msg=msg)
                else:
                    self.assertAlmostEqual(flaring_data['g'][obj_id],
                                           quiescent_data['g'][obj_id]+3*(mjd-59580.0)/10000.0,
                                           3, msg=msg)
                    self.assertAlmostEqual(flaring_data['u'][obj_id],
                                           quiescent_data['u'][obj_id]+2*(mjd-59580.0)/10000.0,
                                           3, msg=msg)

        if os.path.exists(quiet_cat_name):
            os.unlink(quiet_cat_name)
        if os.path.exists(flare_cat_name):
            os.unlink(flare_cat_name)
开发者ID:lsst,项目名称:sims_catUtils,代码行数:104,代码来源:testMLTflareModel.py

示例4: test_mixed_stars

# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import setupCCM_ab [as 别名]
    def test_mixed_stars(self):
        """
        Here we will test the (somewhat absurd) case of a catalog with two different bandpasses
        (lsst_ and cartoon_) in order to verify that gamma values are being cached correctly
        """

        lsst_u_band = Bandpass()
        lsst_u_band.readThroughput(os.path.join(getPackageDir('throughputs'), 'baseline', 'total_u.dat'))
        lsst_g_band = Bandpass()
        lsst_g_band.readThroughput(os.path.join(getPackageDir('throughputs'), 'baseline', 'total_g.dat'))

        obs = ObservationMetaData(bandpassName=['c_u', 'c_g', 'u', 'g'],
                                  m5=[25.0, 26.0, 15.0, 16.0])
        # make the difference in m5 between the two bandpass systems extreme
        # so that, in the unit test, we can be sure that the correct values
        # are being used for the correct getters

        db_dtype = np.dtype([('id', np.int),
                             ('raJ2000', np.float),
                             ('decJ2000', np.float),
                             ('sedFilename', str, 100),
                             ('magNorm', np.float),
                             ('galacticAv', np.float)])

        inputDir = os.path.join(getPackageDir('sims_catUtils'), 'tests', 'testData')
        inputFile = os.path.join(inputDir, 'IndicesTestCatalogStars.txt')
        db = fileDBObject(inputFile, dtype=db_dtype, runtable='test', idColKey='id')
        cat = CartoonStars(db, obs_metadata=obs, column_outputs=['lsst_u', 'lsst_g',
                                                                 'sigma_lsst_u', 'sigma_lsst_g'])
        with lsst.utils.tests.getTempFilePath('.txt') as catName:
            cat.write_catalog(catName)
            dtype = np.dtype([(name, np.float) for name in cat._column_outputs])
            controlData = np.genfromtxt(catName, dtype=dtype, delimiter=',')

        db_columns = db.query_columns(['id', 'raJ2000', 'decJ2000', 'sedFilename', 'magNorm', 'galacticAv'])

        sedDir = os.path.join(getPackageDir('sims_sed_library'), 'starSED', 'kurucz')

        for ix, line in enumerate(next(db_columns)):
            spectrum = Sed()
            spectrum.readSED_flambda(os.path.join(sedDir, line[3]))
            fnorm = spectrum.calcFluxNorm(line[4], self.normband)
            spectrum.multiplyFluxNorm(fnorm)
            a_x, b_x = spectrum.setupCCM_ab()
            spectrum.addDust(a_x, b_x, A_v=line[5])
            umag = spectrum.calcMag(self.uband)
            self.assertAlmostEqual(umag, controlData['cartoon_u'][ix], 3)
            gmag = spectrum.calcMag(self.gband)
            self.assertAlmostEqual(gmag, controlData['cartoon_g'][ix], 3)
            lsst_umag = spectrum.calcMag(lsst_u_band)
            self.assertAlmostEqual(lsst_umag, controlData['lsst_u'][ix], 3)
            lsst_gmag = spectrum.calcMag(lsst_g_band)
            self.assertAlmostEqual(lsst_gmag, controlData['lsst_g'][ix], 3)
            umagError, gamma = calcMagError_m5(umag, self.uband, obs.m5['c_u'], PhotometricParameters())
            gmagError, gamma = calcMagError_m5(gmag, self.gband, obs.m5['c_g'], PhotometricParameters())
            self.assertAlmostEqual(umagError, controlData['sigma_cartoon_u'][ix], 3)
            self.assertAlmostEqual(gmagError, controlData['sigma_cartoon_g'][ix], 3)

            lsst_umagError, gamma = calcMagError_m5(lsst_umag, lsst_u_band,
                                                    obs.m5['u'], PhotometricParameters())
            lsst_gmagError, gamma = calcMagError_m5(lsst_gmag, lsst_g_band,
                                                    obs.m5['g'], PhotometricParameters())

            self.assertAlmostEqual(lsst_umagError, controlData['sigma_lsst_u'][ix], 3)
            self.assertAlmostEqual(lsst_gmagError, controlData['sigma_lsst_g'][ix], 3)
            self.assertGreater(np.abs(lsst_umagError-umagError), 0.01)
            self.assertGreater(np.abs(lsst_gmagError-gmagError), 0.01)
开发者ID:lsst,项目名称:sims_catUtils,代码行数:69,代码来源:testArbitraryUncertaintyGetters.py


注:本文中的lsst.sims.photUtils.Sed.setupCCM_ab方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。