本文整理汇总了Python中lsst.sims.photUtils.Sed.setupCCM_ab方法的典型用法代码示例。如果您正苦于以下问题:Python Sed.setupCCM_ab方法的具体用法?Python Sed.setupCCM_ab怎么用?Python Sed.setupCCM_ab使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类lsst.sims.photUtils.Sed
的用法示例。
在下文中一共展示了Sed.setupCCM_ab方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: calcADUwrapper
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import setupCCM_ab [as 别名]
def calcADUwrapper(sedName=None, magNorm=None, redshift=None, internalAv=None, internalRv=None,
galacticAv=None, galacticRv=None, bandpass=None):
"""
Read in an SED and calculat the number of ADU produced by that SED in a specified bandpass
Parameters
----------
sedName is a string specifying the file name of the SED
magNorm is the normalizing magnitude of the SED in the imsimBandpass
redshift is the redshift of the SED
internalAv is the Av due to internal dust of the source (if a galaxy)
internalRv is the Rv due to internal dust of the source (if a galaxy)
galacticAv is the Av due to Milky Way dust between observer and source
galacticRv is the Rv due to Milky Way dust between observer and source
bandpass is an intantiation of Bandpass representing the band in which the ADUs are measured
Returns
-------
A float representing the number of ADUs measured in the bandpass
"""
imsimband = Bandpass()
imsimband.imsimBandpass()
sed = Sed()
sed.readSED_flambda(sedName)
fNorm = sed.calcFluxNorm(magNorm, imsimband)
sed.multiplyFluxNorm(fNorm)
if internalAv is not None and internalRv is not None:
if internalAv != 0.0 and internalRv != 0.0:
a_int, b_int = sed.setupCCM_ab()
sed.addDust(a_int, b_int, A_v=internalAv, R_v=internalRv)
if redshift is not None and redshift != 0.0:
sed.redshiftSED(redshift, dimming=True)
a_int, b_int = sed.setupCCM_ab()
sed.addDust(a_int, b_int, A_v=galacticAv, R_v=galacticRv)
adu = sed.calcADU(bandpass, photParams=PhotometricParameters())
return adu
示例2: test_stars
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import setupCCM_ab [as 别名]
def test_stars(self):
obs = ObservationMetaData(bandpassName=['c_u', 'c_g'], m5=[25.0, 26.0])
db_dtype = np.dtype([('id', np.int),
('raJ2000', np.float),
('decJ2000', np.float),
('sedFilename', str, 100),
('magNorm', np.float),
('galacticAv', np.float)])
inputDir = os.path.join(getPackageDir('sims_catUtils'), 'tests', 'testData')
inputFile = os.path.join(inputDir, 'IndicesTestCatalogStars.txt')
db = fileDBObject(inputFile, dtype=db_dtype, runtable='test', idColKey='id')
cat = CartoonStars(db, obs_metadata=obs)
with lsst.utils.tests.getTempFilePath('.txt') as catName:
cat.write_catalog(catName)
dtype = np.dtype([(name, np.float) for name in cat.column_outputs])
controlData = np.genfromtxt(catName, dtype=dtype, delimiter=',')
db_columns = db.query_columns(['id', 'raJ2000', 'decJ2000', 'sedFilename', 'magNorm', 'galacticAv'])
sedDir = os.path.join(getPackageDir('sims_sed_library'), 'starSED', 'kurucz')
for ix, line in enumerate(next(db_columns)):
spectrum = Sed()
spectrum.readSED_flambda(os.path.join(sedDir, line[3]))
fnorm = spectrum.calcFluxNorm(line[4], self.normband)
spectrum.multiplyFluxNorm(fnorm)
a_x, b_x = spectrum.setupCCM_ab()
spectrum.addDust(a_x, b_x, A_v=line[5])
umag = spectrum.calcMag(self.uband)
self.assertAlmostEqual(umag, controlData['cartoon_u'][ix], 3)
gmag = spectrum.calcMag(self.gband)
self.assertAlmostEqual(gmag, controlData['cartoon_g'][ix], 3)
umagError, gamma = calcMagError_m5(umag, self.uband, obs.m5['c_u'], PhotometricParameters())
gmagError, gamma = calcMagError_m5(gmag, self.gband, obs.m5['c_g'], PhotometricParameters())
self.assertAlmostEqual(umagError, controlData['sigma_cartoon_u'][ix], 3)
self.assertAlmostEqual(gmagError, controlData['sigma_cartoon_g'][ix], 3)
示例3: test_flare_magnitudes_mixed_with_dummy
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import setupCCM_ab [as 别名]
#.........这里部分代码省略.........
# milli-mag, our flaring model gives us the magnitudes
# expected, given the light curves specified in
# setUpClass()
for mjd in (59580.0, 60000.0, 70000.0, 80000.0):
obs = ObservationMetaData(mjd=mjd)
quiet_cat = QuiescentCatalog(db, obs_metadata=obs)
quiet_cat.write_catalog(quiet_cat_name)
flare_cat = FlaringCatalogDummy(db, obs_metadata=obs)
flare_cat.scratch_dir = self.scratch_dir
flare_cat._mlt_lc_file = self.mlt_lc_name
flare_cat.write_catalog(flare_cat_name)
quiescent_data = np.genfromtxt(quiet_cat_name, dtype=dtype, delimiter=',')
flaring_data = np.genfromtxt(flare_cat_name, dtype=dtype, delimiter=',')
self.assertGreater(len(quiescent_data), 2)
self.assertEqual(len(quiescent_data), len(flaring_data))
self.assertIn(3, flaring_data['id'])
for ix in range(len(flaring_data)):
obj_id = flaring_data['id'][ix]
self.assertEqual(obj_id, ix)
msg = ('failed on object %d; mjd %.2f\n u_quiet %e u_flare %e\n g_quiet %e g_flare %e' %
(obj_id, mjd, quiescent_data['u'][obj_id], flaring_data['u'][obj_id],
quiescent_data['g'][obj_id], flaring_data['g'][obj_id]))
self.assertEqual(quiescent_data['id'][obj_id], flaring_data['id'][obj_id], msg=msg)
self.assertAlmostEqual(ss.magFromFlux(baseline_fluxes[obj_id][0]),
quiescent_data['u'][obj_id], 3, msg=msg)
self.assertAlmostEqual(ss.magFromFlux(baseline_fluxes[obj_id][1]),
quiescent_data['g'][obj_id], 3, msg=msg)
if obj_id != 3:
# the models below are as specified in the
# setUpClass() method
if obj_id == 0 or obj_id == 1:
amp = 1.0e42
dt = 3652.5
t_min = flare_cat._survey_start - t0_list[obj_id]
tt = mjd - t_min
while tt > dt:
tt -= dt
u_flux = amp*(1.0+np.power(np.sin(tt/100.0), 2))
g_flux = amp*(1.0+np.power(np.cos(tt/100.0), 2))
elif obj_id==2:
amp = 2.0e41
dt = 365.25
t_min = flare_cat._survey_start - t0_list[obj_id]
tt = mjd - t_min
while tt > dt:
tt -= dt
u_flux = amp*(1.0+np.power(np.sin(tt/50.0), 2))
g_flux = amp*(1.0+np.power(np.cos(tt/50.0), 2))
# calculate the multiplicative effect of dust on a 9000K
# black body
bb_sed = Sed(wavelen=bb_wavelen, flambda=bb_flambda)
u_bb_flux = bb_sed.calcFlux(bp_dict['u'])
g_bb_flux = bb_sed.calcFlux(bp_dict['g'])
a_x, b_x = bb_sed.setupCCM_ab()
bb_sed.addDust(a_x, b_x, A_v=av_list[obj_id])
u_bb_dusty_flux = bb_sed.calcFlux(bp_dict['u'])
g_bb_dusty_flux = bb_sed.calcFlux(bp_dict['g'])
dust_u = u_bb_dusty_flux/u_bb_flux
dust_g = g_bb_dusty_flux/g_bb_flux
area = 4.0*np.pi*np.power(distance_list[obj_id], 2)
tot_u_flux = baseline_fluxes[obj_id][0] + u_flux*dust_u/area
tot_g_flux = baseline_fluxes[obj_id][1] + g_flux*dust_g/area
self.assertAlmostEqual(ss.magFromFlux(tot_u_flux), flaring_data['u'][obj_id],
3, msg=msg)
self.assertAlmostEqual(ss.magFromFlux(tot_g_flux), flaring_data['g'][obj_id],
3, msg=msg)
self.assertGreater(np.abs(flaring_data['g'][obj_id]-quiescent_data['g'][obj_id]),
0.001, msg=msg)
self.assertGreater(np.abs(flaring_data['u'][obj_id]-quiescent_data['u'][obj_id]),
0.001, msg=msg)
else:
self.assertAlmostEqual(flaring_data['g'][obj_id],
quiescent_data['g'][obj_id]+3*(mjd-59580.0)/10000.0,
3, msg=msg)
self.assertAlmostEqual(flaring_data['u'][obj_id],
quiescent_data['u'][obj_id]+2*(mjd-59580.0)/10000.0,
3, msg=msg)
if os.path.exists(quiet_cat_name):
os.unlink(quiet_cat_name)
if os.path.exists(flare_cat_name):
os.unlink(flare_cat_name)
示例4: test_mixed_stars
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import setupCCM_ab [as 别名]
def test_mixed_stars(self):
"""
Here we will test the (somewhat absurd) case of a catalog with two different bandpasses
(lsst_ and cartoon_) in order to verify that gamma values are being cached correctly
"""
lsst_u_band = Bandpass()
lsst_u_band.readThroughput(os.path.join(getPackageDir('throughputs'), 'baseline', 'total_u.dat'))
lsst_g_band = Bandpass()
lsst_g_band.readThroughput(os.path.join(getPackageDir('throughputs'), 'baseline', 'total_g.dat'))
obs = ObservationMetaData(bandpassName=['c_u', 'c_g', 'u', 'g'],
m5=[25.0, 26.0, 15.0, 16.0])
# make the difference in m5 between the two bandpass systems extreme
# so that, in the unit test, we can be sure that the correct values
# are being used for the correct getters
db_dtype = np.dtype([('id', np.int),
('raJ2000', np.float),
('decJ2000', np.float),
('sedFilename', str, 100),
('magNorm', np.float),
('galacticAv', np.float)])
inputDir = os.path.join(getPackageDir('sims_catUtils'), 'tests', 'testData')
inputFile = os.path.join(inputDir, 'IndicesTestCatalogStars.txt')
db = fileDBObject(inputFile, dtype=db_dtype, runtable='test', idColKey='id')
cat = CartoonStars(db, obs_metadata=obs, column_outputs=['lsst_u', 'lsst_g',
'sigma_lsst_u', 'sigma_lsst_g'])
with lsst.utils.tests.getTempFilePath('.txt') as catName:
cat.write_catalog(catName)
dtype = np.dtype([(name, np.float) for name in cat._column_outputs])
controlData = np.genfromtxt(catName, dtype=dtype, delimiter=',')
db_columns = db.query_columns(['id', 'raJ2000', 'decJ2000', 'sedFilename', 'magNorm', 'galacticAv'])
sedDir = os.path.join(getPackageDir('sims_sed_library'), 'starSED', 'kurucz')
for ix, line in enumerate(next(db_columns)):
spectrum = Sed()
spectrum.readSED_flambda(os.path.join(sedDir, line[3]))
fnorm = spectrum.calcFluxNorm(line[4], self.normband)
spectrum.multiplyFluxNorm(fnorm)
a_x, b_x = spectrum.setupCCM_ab()
spectrum.addDust(a_x, b_x, A_v=line[5])
umag = spectrum.calcMag(self.uband)
self.assertAlmostEqual(umag, controlData['cartoon_u'][ix], 3)
gmag = spectrum.calcMag(self.gband)
self.assertAlmostEqual(gmag, controlData['cartoon_g'][ix], 3)
lsst_umag = spectrum.calcMag(lsst_u_band)
self.assertAlmostEqual(lsst_umag, controlData['lsst_u'][ix], 3)
lsst_gmag = spectrum.calcMag(lsst_g_band)
self.assertAlmostEqual(lsst_gmag, controlData['lsst_g'][ix], 3)
umagError, gamma = calcMagError_m5(umag, self.uband, obs.m5['c_u'], PhotometricParameters())
gmagError, gamma = calcMagError_m5(gmag, self.gband, obs.m5['c_g'], PhotometricParameters())
self.assertAlmostEqual(umagError, controlData['sigma_cartoon_u'][ix], 3)
self.assertAlmostEqual(gmagError, controlData['sigma_cartoon_g'][ix], 3)
lsst_umagError, gamma = calcMagError_m5(lsst_umag, lsst_u_band,
obs.m5['u'], PhotometricParameters())
lsst_gmagError, gamma = calcMagError_m5(lsst_gmag, lsst_g_band,
obs.m5['g'], PhotometricParameters())
self.assertAlmostEqual(lsst_umagError, controlData['sigma_lsst_u'][ix], 3)
self.assertAlmostEqual(lsst_gmagError, controlData['sigma_lsst_g'][ix], 3)
self.assertGreater(np.abs(lsst_umagError-umagError), 0.01)
self.assertGreater(np.abs(lsst_gmagError-gmagError), 0.01)